2506.11483v3 [cs.DC] 17 Oct 2025

arXiv

Capsule: Efficient Player Isolation for Datacenters

Zhouheng Du, Nima Davari, Li Li, Wei Sen Loi, Nodir Kodirov
Huawei Technologies Canada
{simon.dul,nima.davari,leo.lili,wei.sen.loi,nodir.kodirov}@huawei.com

(b) 2 Player (2p) 0 10 Time(s) 20 30 40
o v 1pGPU =+ 1pVRAM =—— IpCPU == 1pRAM
©+ 4pGPU ==+ 4pVRAM = 4pCPU == 4p RAM

o
(e) 4 Pla
= q\’:

(g) I'Player (1p)

w

-V, T — T T T
yer (4]7) 0 10 Time(s) 20 30 40
e «+ 1pGPU =+ 1pVRAM —— 1pCPU == 1pRAM

(h) 9 Player (9p) ' : 0 10 Time (s) z'o 30 40

- 1pGPU —- IpVRAM —— IpCPU == 1pRAM
©2 2pGPU =—- 2pVRAM —— 2pCPU == 2pRAM

+a+s 9pGPU —- 9pVRAM —— 9pCPU —=— 9pRAM

Figure 1: Three examples demonstrate applicability of Capsule to wide range of graphics intensive applications: 1) high-graphics:
Paris OPERA HOUSE to experience a digital twin of Paris Opera House (top); 2) medium-graphics: O3DE MULTIPLAYER SAMPLE,
a shooting game (middle); 3) low-graphics: EXHIBITION to experience digital twin of a museum (bottom). Capsule achieves high
datacenter resource utilization-GPU, VRAM, CPU, RAM-while providing lightweight and efficient player-isolation.

Abstract

Cloud gaming is increasingly popular. A challenge for cloud provider
is to keep datacenter utilization high: a non-trivial task due to ap-
plication variety. These applications come in different shapes and
sizes. So do cloud datacenter resources, e.g., CPUs, GPUs, NPUs.
Part of the challenge stems from game engines being predominantly
designed to run only one player. For example, one player in a light-
weight game might utilize only a fraction of the cloud server GPU.
The remaining GPU capacity will be left underutilized, an undesired
outcome for the cloud provider.

We introduce Capsule, a mechanism to seamlessly share one
GPU, and other cloud servers resources, across multiple players.
Sharing makes the cost of multiple players sublinear. We imple-
mented Capsule in O3DE, a popular open source game engine.
Our evaluations show that Capsule increases datacenter resource
utilization by accommodating up to 2.25x more players, without
degrading player gaming experience. This is the product of Capsule

using up to 1.43x less GPU, 3.11x less VRAM, 3.7x less CPU, and
3.87x less RAM compared to the baseline. Capsule is also application
agnostic. We ran four applications on Capsule-based O3DE with
no application changes. Our experiences with four applications,
three servers with different hardware specifications, including the
one with four GPUs, and multi-server cluster show that Capsule
design can be adopted by other game engines to increase datacenter
utilization across cloud providers.

CCS Concepts

« Computer systems organization — Cloud computing; Real-time
system architecture; « Computing methodologies — Graphics
systems and interfaces.

1 Introduction

Cloud gaming is attractive for players as well as cloud providers.
For players, it alleviates the deployment cost. They no longer have

https://arxiv.org/abs/2506.11483v3

Preprint, Under review, 2025

to own the latest hardware (e.g., GPU) to play the game in high
quality. Cloud already hosts the latest hardware, sometimes before
they become publicly available [Petty et al. 2023]. For providers, it
is about generating revenue while delivering the highest gaming
quality. Higher the cloud datacenter utilization, higher the revenue.

However, it is challenging to achieve high datacenter utilization
with gaming applications. Part of the challenge arises from games
having diverse shapes and sizes. Shapes correspond to diverse re-
sources games consume, such as CUDA cores, RT cores, and Tensor
cores in GPUs, in addition to the host CPU and RAM. Sizes corre-
spond to the differing amount of these resources games consume,
e.g., a graphics-intensive game consumes the entire GPU while a
graphics-light game consumes only a fraction of that GPU. An-
other challenge arises from datacenters having diverse hardware.
A datacenter has servers with several generations of CPUs and
GPUs [Patel et al. 2023]. For example, a server with the oldest GPU
can accommodate only one player while with the latest GPU accom-
modates dozen players. Thus, cloud providers need a mechanism
to share GPU, and other resources, across multiple players.

Games are not the only kind of cloud application that require
server resource multiplexing. Other cloud workloads do too and
resource virtualization has been the primary solution for over 20
years [Barham et al. 2003]. Broadly, there are three virtualization
categories: Virtual Machines (VM) [AWS 2025], containers [Google
2025], and lambdas [Azure 2025], as shown in Figure 2. The con-
tainer approach is well-fit for games because (1) it does not require
knowing the application semantics, which makes the solution ap-
plicable to wide range of games, and (2) it does not impose high
overhead, i.e., multiplexing mechanism itself consumes insignifi-
cant resources, e.g., CPU cycles. Lambdas suffer (1) and VMs suffer
(2). How does container-like multiplexing solution look like for
gaming applications?

We propose player-level multiplexing. A player in the graphics-
heavy application will continue consuming the entire GPU. How-
ever, when a GPU has sufficient capacity to accommodate two or
more players in a multiplayer game, GPU resources will be multi-
plexed across these players. We designed, implemented, and evalu-
ated Capsule: an in-game-engine player isolation mechanism
for multiplayer games. Capsule also allows cross-player sharing.
For example, when two players enter a room and have a shared
game asset in their view, we can reuse the asset geometry across
these two players, without players noticing. Sharing offers cloud
providers with sublinear resource usage growth for linear player
increase: the phenomena we call sublinear resource footprint.

We implemented Capsule in O3DE, a popular open source game
engine [O3DE 2025b]. Our evaluations show that Capsule-based
O3DE can increase datacenter resource utilization by accommodat-
ing up to 2.25x more players, without degrading player experience.
Capsule is also application agnostic. We ran four applications on
Capsule with no application changes. Our experiences show that
Capsule design is generalizable and can be adopted by other engines
to increase datacenter utilization across cloud providers.

2 Requirements

There are four requirements for a player-isolation mechanism in
cloud, in order of their importance:

Zhouheng Du, Nima Davari, Li Li, Wei Sen Loi, Nodir Kodirov

Lambdas Containers Virtual Machines

- weak isolation - medium isolation - strong isolation

- known semantics - unknown semantics - unknown semantics
- low overhead - medium overhead - high overhead
a0 o Om—
fine Isolation Spectrum coarser
Figure 2: Existing isolation mechanisms in the cloud. Lamb-
das are lightweight but require knowledge of application
semantics. Virtual Machines are agnostic to semantics but
are heavyweight. The container approach strikes the right
balance for gaming applications.

e R1: Transparent: Players should be unaware of other play-
ers sharing cloud resources. A player experience, such as, in-
put latency, output streaming quality, and frames-per-second
(EPS), should not degrade due to other players.

e R2: Compatible: Player isolation should not require signif-
icant changes to run existing applications, best if no appli-
cation changes are required. The workflow for developing
a new application should also remain near identical, if not
exactly identical.

e R3: Lightweight: Isolation mechanism itself should not
consume significant system resources, e.g., CPU and RAM.

¢ R4: Efficient: Maximize cross-player sharing. For example,
resource (e.g., CPU) footprint of the second player should be
less than that of the first player because the second player
can reuse some computation results from the first player.

Capsule satisfies all four requirements. However, for example,
the process-level-isolation would satisfy R1 and R2, but violate
R3 and R4. The process-level-isolation is achieved when we sim-
ply run separate game engine process in a cloud server for each
player. R3 is violated because spawning and managing separate OS
process is not as lightweight as handling all computation within
the same process. R4 is violated because players are unable to
share computation results, which is the by-product of the process-
level-isolation by design because the OS processes operate on a
separate memory address (unless another mechanism is used for
cross-process-memory-sharing). See Section 6 for further discus-
sion of functional and performance transparency (R1).

3 Design and Implementation

We designed Capsule to satisfy all four aforementioned require-
ments. Figure 3 shows Capsule architecture, along with other es-
sential modules in cloud deployment. Capsule is a new module in
O3DE. Capsule communicates with different system components,
such as audio system, input system, rendering system (includes
both audio and video rendering), and game logic (event system).
Capsule leverages Entity—Component-System (ECS), an existing
game engine architecture [Wikipedia 2013]. ECS makes it conve-
nient to represent game world objects. An ECS-based game engine
contains entities that have data components and systems to oper-
ate on those components. This architecture is widely adopted by
modern game engines [Unity 2025], including O3DE.

As shown in Figure 3, players connect to the cloud over the wide
area network, e.g., Internet. Players’ entry point is the Streaming

Capsule: Efficient Player Isolation for Datacenters

Preprint, Under review, 2025

Audio Encoding\

Ul Rendering Input
12 Elements -
O (/5 = N i Js) ")
> () =o L - | Frame ’[1 LE:])»} LM:D J O
2 oo JCamera 2 5 | | ' PlayerN
i | | v/
qc_) % Storage Emityw{iiif‘gf) (ilo%gf) ;J]% (:n ?’%
ke)) 8_ Event. :A—: : : < : :&i Streamlng \I\)‘
c ‘ A —_a_ =R]
w S e Ve
O Global Player1 PlayerN J
y i Cloud

Figure 3: Capsule-based cloud architecture. Capsule provides player isolation by relying on Capsule Storage for player state

management.

module, which creates a separate game session for each player,
isolating their inputs, such as keyboard and mouse, and outputs,
such as video streams. The Streaming module passes the player-
specific input to a separate game session, which includes player-
specific Ul, Rendering, Input, Audio, and Encoding states. These
states are reflected in the game, but are managed inside the engine.
In other words, application will perceive all player-specific states
to be isolated from each other at the engine level, i.e., as if each
player (or in fact, each game instance) has an engine of its own. In
Capsule-based O3DE, all of these players share one engine.

Capsule distinguishes different players’ input, output, and be-
haviours by using Capsule Storage. Capsule Storage manages two
constructs: entities and events. Entities are game objects, such as a
car, a light, an avatar. Events, or gameplay events, include in-game
events, such as running, jumping, exploding. They are predesigned
by the game developer and are written in the game script. Entities
and events determine the behavior of each player and of the global
environment. They also determine the final rendered frame.

As shown in Figure 3, Capsule has two types of Storage: global
and local. There is only one global storage in the entire engine. All
players share the entities and events inside the global storage. There
are one or more local Capsule Storages, one for each player. Entities
inside the local storage are visible only to storage-owner-player
except for the player controlled network entities, such as the player
avatar whose state is shared with other players. For example, when
a player jumps, that avatar jump should be visible to everyone.
Per-player events are contained within the local storage. Capsule
isolates player-specific tasks at runtime by directing player-specific
entities and events to the respective player-owned local storage.

Figure 4 shows how Capsule handles per-player entity track-
ing using global and local storage. There are seven kinds of con-
structs, starting with Predefined Global Entity and ending with
Player Controlled Network Entity. Not all of these constructs are
exposed to the game developer. In fact, the game developers design
games as if they did for vanilla (non-Capsule) O3DE, e.g., declare
an entity as Network Entity (such as a museum piece in EXHIBI-
TION) or Player Controlled Network Entity (such as a player avatar).
Capsule manages entity division into local and global, as well as
reference tracking. For example, when there are no players, there

are no constructs. Optionally, Capsule could automatically create
and maintain a game level cache to accelerate game loading when
players join. This cache is invisible to the game.

As Figure 4 shows, players join through API calls from the
Streaming module (see Figure 3). When the API call is made for
the first player, predefined global entities are initialized, unless
they have already been initialized via cache. During player join, all
entities that the game developer specified in the initial level are
spawned. For subsequent players, predefined global entities are not
re-instantiated, instead, references to the original entities are cre-
ated within each subsequent player’s local storage. These references
ensure that the player local gameplay logic remains consistent with
the vanilla game-level design (for non-Capsule engine).

When the second player joins, local entities are duplicated for
each player. A corresponding reference for each duplicate is main-
tained in the global storage. This reference mechanism ensures
that player-specific gameplay logic is consistent with the vanilla
design. Network entities, i.e., entities whose state and logic must
be synchronized through the game server [Lu et al. 2006], are typi-
cally treated as global entities since network entities are inherently
shared among players. Such treatment is consistent with legacy
multiplayer architecture.

Event tracking follows analogous flow as the entity tracking.
There are global events, such as time-of-the-day change in PARI1s
OprERA HOUSE, and local events, such as bullet inventory decrease
after player shots in O3DE MuULTIPLAYER SAMPLE. These distinctions
also apply to the event storage, which also separates global and
local scopes. Global events may trigger both global and local events,
whereas local events are restricted to interactions within the same
local event storage. For example, time-of-the-day change event
affects all players, whereas a local inventory-update event should
remain confined to that player’s local storage.

A notable exception arises with player-controlled network enti-
ties, e.g., the entity that is labelled with “Dynamically Added from
Game Server” in Figure 4. This entity is globally visible across all
players, thereby functioning as a global entity, but its event propaga-
tion is restricted to local event storage. For instance, a player press-
ing the “attack” command generates its own animations and state
changes without broadcasting to other players. However, when

Preprint, Under review, 2025

O Predefined Global Entity O Network Entity
(") Global Entity Reference () Network Entity Reference
O Local Entity O Player Controlled Network Entity

(:) Local Entity Reference

‘ NG Plavers ——= API Calls from
L y . - = => Streaming Module
— . Streaming L
Client Join State Transition in
< _________ _>
B Client Leave N Capsule Storage
- . ~_ | — - -
S e O
@ <= ">, Global ' o ~2=*._Global \\
> > M
© Storage : © - x Storage
o PIN AN~ (
¢ IRE '
(@] [
(., Dynamically Added e €
‘rom Game Server -
O o e OB 00 !
{ocal Storage 1 // ‘Q:al Storage 1 Local Storage}/

Figure 4: Player entity tracking using global and local Cap-
sule storage. Global storage is instantiated only once. Local
storage is created as players join and is destroyed when they
leave the game.

this action results in interactions with other players (e.g., a colli-
sion), the corresponding events are escalated to the game server
and synchronized globally, making these events visible to other
players. This local-propagation-until-interaction approach ensures
that player inputs remain isolated, while cross-player interactions
get broadcasted across the entire shared game world.

We designed Capsule Storage (Figure 4) and Capsule architecture
(Figure 3) with generality in mind. Most of the Capsule changes
lies on either the ECS layer or the input and output systems of
the game engine. This design maintains compatibility with other
sub-systems, such as the rendering and physics systems. Therefore,
it is possible, and in fact, it is encouraged, to replace these systems
with multi-player-aware alternatives, without modifying Capsule.
For example, a related work, On Surface Caches (OSC) [Weinrauch
et al. 2023], caches and reuses the computed color values of the
same world position across multiple players. The default O3DE
rendering sub-system can be replaced with OSC-like alternative to
further improve cross-player-sharing, without changing Capsule.

We ported four applications to Capsule-based O3DE to validate
our design. All four applications nicely fit within our entity and
event tracking systems. Figure 1 shows three of them for brevity.
Our experience with these four applications show that Capsule-
based O3DE is fully compatible (R2) with non-Capsule O3DE. No
changes were required to these applications. Moreover, the work-
flow for further development of these applications on Capsule-based
O3DE was identical to that of non-Capsule O3DE.

Capsule design principles can be easily adopted in other game
engines thanks to ECS architecture. We also believe that four de-
sign requirements (R1-R4) are the common goals in all cloud

Zhouheng Du, Nima Davari, Li Li, Wei Sen Loi, Nodir Kodirov

deployments. Thus, our design and implementation decisions are
applicable to other game engines and other cloud environments.

4 Methodology

We evaluated Capsule on diverse datacenter hardware. We used
three different workstations: with one GPU, with two GPUs, and
with four GPUs, as described in Table 1. All workstations run Win-
dows OS to faithfully reproduce our production environment. Cap-
sule implementation exists for Linux OS but is not as thoroughly
performance evaluated as Windows. We believe results we report
here are applicable to Linux environment as well. We fixed the
application FPS to 30, a common minimum threshold. We read
the system-wide utilization levels of GPU, VRAM, CPU, and RAM
resources every second. The value on each second is the average uti-
lization during that one-second interval; consistent with Windows
performance counters [Microsoft 2025].

We compare the cloud server resource consumption of Capsule
against the Baseline. For Baseline, we implemented process-level-
isolation, i.e., a separate game engine process for each player. (We
were unable to use production-level alternative virtualization tech-
niques, such as NVIDIA RTX Virtual Workstation (vWS) [NVIDIA
2025b], for the baseline due to NVIDIA licensing restrictions [NVIDIA
2025c].) In Baseline, we launched the EXHIBITION game server [Lu
et al. 2006] and then launched game clients one by one, measuring
the server utilizations as players get added. The client-side evalua-
tion is identical between Capsule and Baseline, but on the server
side, after the first player, we keep adding players to the same client
process (running in the cloud server), rather than creating a sepa-
rate process per player (in the cloud server). This is consistent with
the Capsule design in Figure 3.

We evaluated Capsule’s applicability to diverse datacenter work-
loads by running three different applications-Paris OPERA HOUSE,
O3DE MULTIPLAYER SAMPLE [O3DE 2025a], EXHIBITION-On SIN-
GLEGPU workstation (see Table 1). We monitored resource utiliza-
tion for 40 seconds of gameplay time.

In hardware diversity experiments, we ran EXHIBITION on three
workstations from Table 1. In these experiments, we compare re-
source utilizations of Capsule and Baseline with two or more players.
In each experiment, the gameplay of each player is unique, and is
deterministic across different hardware. It is unique because the
player walking trajectories differ within the same experiment. We
record a stochastic trajectory for each player in a separate experi-
ment and replay that trajectory in Capsule vs. Baseline evaluations.
For example, if there are 4 players in the experiment, each player
trajectory is stochastic. Stochasity makes our evaluations unbiased,
i.e, free from the selective benchmarking crime [Heiser 2025]. The
view the player gets in a frame influences the rendering load for
that frame, which in turn influences how much computation can
be shared across multiple players in that frame. In the biased case,
we would have all players have the same view, or largely over-
lapping view, which would unfairly make Capsule outshine the
Baseline because the amount of cross-player sharing is maximized.
By adopting stochasity, our evaluations are free from such bias. In
fact, stochastic trajectories might undersell the Capsule benefits be-
cause players might inadvertently have less view overlap, hence less
sharing, than they would otherwise have in the realistic, production

Capsule: Efficient Player Isolation for Datacenters

Preprint, Under review, 2025

Table 1: Workstations used for Capsule evaluation. All workstations use NVIDIA GPUs. RAM and VRAM values are in GB.

Workstation | CPU CPU RAM| GPU VRAM| GPU Count
Cores

SINGLEGPU AMD Ryzen 7 5800X 8 32 GeForce RTX 4090 24 1

DuaLGPU 13th Gen Intel Core i7-13700K 16 64 GeForce RTX 3090 24 2

QuapGPU AMD Ryzen Threadripper PRO 5975WX | 32 256 | ForTis? 24+
deployment. We would rather undersell than be biased. Thus, the g Lo0 GPU VRAM CPU RAM
Capsule benefits we report in our experiments are conservative. g ~@- Baseline

The determinism across different hardware allows our experi- E 30 T Copsule

ments stay true to our claim: hardware is different, everything else § ’,4”_:/_:444_,4

is the same. When we evaluate different hardware, we replay the
prerecorded trajectories for the first player, the second player, and
so on. Thus, the player generated rendering load is identical across
all hardware configurations while the number of players accom-
modated might increase (or decrease) depending on the compute
capacity of the hardware under evaluation. This exactly is the pur-
pose of the hardware diversity experiments: evaluate if the Capsule
benefits are consistent across different datacenter hardware.

In general, we chose the strongest viable baseline and compared it
to Capsule. We evaluated on wide range of applications and diverse
datacenter hardware while faithfully replicating our production
environment and remaining bias free.

5 Evaluation

We evaluate how efficiently Capsule accommodates multiple play-
ers. We run three applications on three datacenter servers. We first
evaluate all three applications on SINGLEGPU workstation, with
the strongest GPU. We then evaluate EXHIBITION application on
three workstations, and on a multi-server cluster.

Figure 1 shows three applications on SINGLEGPU workstation.
Figure 1(a) and Figure 1(b) show game server view of PARIs OPERA
Houske with single player (1p) and two players (2p), respectively.
Figure 1(c) shows resource utilizations for these two environments.
Unlike other applications used in our experiments, GPU usage in
Par1s OpPERA HousE has high variance. For example, in some small
intervals, 2p utilization line is below 1p utilization. This is partially
due to the utilization capturing noise, but is mostly due to view
angle of the players. For example, between 25th-28th seconds, if two
players in 2p environment happen to view the corner of the wall,
while the single player in 1p environment views the distant place
with many polygons, 1p GPU utilization will be higher. However,
if we summarize the GPU utilizations across the entire 40-second
gameplay, without focusing on a small time intervals, the average
2p GPU utilization (x50%) is ~10% higher than 1p (~40%). This
is expected: with Capsule, the second player imposes a sublinear
~10% GPU cost.

This delta is smaller, but is more significant in other resources
(VRAM, CPU, RAM). If the delta is the smallest, i.e., zero, 1p and
2p lines overlap. This means that 2p utilization of that resource is
identical to that of 1p, which means the second player came for free
(for that resource). In Figure 1(c), this is almost the case for VRAM,

'Exact GPU model is not disclosed. VRAM “24+” means it has more VRAM than the
above two. FORTIS is our custom label, means strong in Latin.

o

1 5 9 1 5 9 1 5 9 1 5 9
Number of Players

Figure 5: Scalability of Capsule as we increase number of
players. Capsule and Baseline host up to 9 and 4 players,
respectively, on the ExHIBITION application. Capsule accom-
modates up to 2.25x more players thanks to sublinear re-
sources increase per added player.

CPU, and RAM: the second player has a small extra cost. Thus, the
cost of additional players is sublinear for these resources.

Capsule is unable to accommodate more than two players in
Paris OPErRA HoUsE application. The FPS drops below the threshold
(30) with the third player due to CPU bottleneck. This is not visible
in Figure 1(c), i.e., CPU utilization is only ~30% for 1p as well as 2p.
This is misleading because CPU utilizations are reported and are
plotted for all 8 cores (see SINGLEGPU workstation in Table 1) while
there is only one main thread for all players, which runs on a single
CPU core. That thread is the bottleneck. We can improve Capsule
performance by spreading players across CPU cores. We have not
done so, yet, because in most games, GPU is the bottleneck (as
evident in our third application, ExHiBITION). However, extending
Capsule to use different CPU cores for different players is the right
future work to make Capsule applicable to diverse applications.

The sublinear cost conclusion holds in O3DE MULTIPLAYER SAM-
pLE [O3DE 2025a] and ExHIBITION applications, in Figure 1(d)-(f)
and Figure 1(g)-(i), respectively. For example, as shown in Fig-
ure 1(i) for EXHIBITION application, one player consumes ~18% of
GPU while 9 players consume around ~99%: a sublinear per-player
increase. Similarly, CPU consumption increases sublinearly: only by
~10% point with 9 players (~29%) vs. one player (~19%). Note that
O3DE MULTIPLAYER SAMPLE also suffers aforementioned single-
thread bottleneck. ExHIBITION does not suffer it and therefore can
achieve over 99% GPU utilization for 9 players. These results demon-
strate that Capsule, as it is implemented now, brings greater benefit
to graphics-heavy application, i.e., when GPU is bottleneck. Our
future work will alleviate CPU bottleneck.

Figure 5 shows average resource consumption increase as players
join EXHIBITION application in Figure 1(h). Note that we adjusted
for the effect of game processes only, by subtracting base utiliza-
tions from the measured values. Capsule supported up to 9 players
without dropping FPS below 30, while baseline sharply dropped to
single-digit FPS after 4 players due to CPU contention. At the peak
of the Baseline (4 players), Capsule used 1.43x less GPU, 3.11x

Preprint, Under review, 2025

Zhouheng Du, Nima Davari, Li Li, Wei Sen Loi, Nodir Kodirov

— Op— 1p 2p—— 3p—— 4p—— 5p— 6p 7p 8p—— 9p
GPU VRAM CPU RAM
3 a c €
£.00] @ ©) ©) ©
2 M
> 807
a
§ S0p TN
o
= I =1 | Ao A A L]
A A S e
T 20 e e]E S ORE N A) SU S—
> ———~ A——
9 b d f h
£ 100, ® () A—M_/W ()
()
£ 801 o~
o W
© GO-W
[an]
s 409
'E: ZO‘W
2 0 ; ; ; ; ; . ‘ ‘ i ; ; ;
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time (s) Time (s) Time (s) Time (s)

Figure 6: System-wide utilizations with Capsule and Baseline on SINGLEGPU workstation.

less VRAM, 3.7x less CPU, and 3.87x less RAM compared to the
Baseline. Thanks to these savings, Capsule accommodates more
players, beyond the Baseline. As expected, the Baseline resource
consumption increases linearly with the number of players. How-
ever, the increase in Capsule is sublinear thanks to cross-player
sharing, i.e., Capsule requires a sublinear amount of extra VRAM,
CPU, RAM past the first player. This trend also holds in GPU con-
sumption, but since each player has a different view of the scene,
sharing of GPU computation is lower than in other resources. The
GPU utilization benefit of Capsule could be further improved if
the application uses more shareable rendering techniques, such
as shadowmaps, global illumination, and cross-view diffuse and
effects sharing [Weinrauch et al. 2023].

Figure 6 gives a finer view of the Figure 5 experiment by show-
ing per-second resource utilization during 40 second gameplay, for
different number of players. OP represents the initial state where
the game server and the game client are launched, but no players
are created yet. Results from this diversity evaluation are consistent
with our earlier per-player resource footprint experiment, i.e., Cap-
sule accommodates up to 9 players while Baseline becomes CPU
bottleneck after 4 players. Thus, 2.25x more players with Capsule.

These 2.25x savings are thanks for Capsule’s ability to multiplex
server resources across multiple players. Figure 6(a)-(b) show GPU
utilizations for different number of players. Op line in Figure 6(a)
shows ~10% GPU utilization when there are zero players, i.e., only
the game server, an empty game client, and OS background pro-
cesses are running. With 1 player (1p), GPU utilization in Capsule
(Figure 6(a)) is similar to that of Baseline (Figure 6(b)): both are
~20%. However, as Figure 6(b) shows, with the Baseline, the GPU
utilization reaches up to 37% with two players, up to 62% with three
players, and up to 81% with four players. Thus, each player imposes
linear, ~20% GPU overhead. On the other hand, as Figure 6(a) shows,
with Capsule, the overhead is sublinear: up to 30% with two players,

up to 40% with three players, up to 50% with four players, and so
on until up to 100% with nine players.

The reason we stop with nine players (9p) in Figure 6(a) is be-
cause GPU becomes bottleneck after nine players, which causes
the game FPS to fall below the acceptable threshold (30 FPS). How-
ever, the reason Baseline stops after four players (4p) is the CPU
bottleneck, not the GPU. As Figure 6(f) shows, the CPU becomes a
bottleneck with the fourth player, game dropping below 30 FPS. On
the other hand, as Figure 6(e) shows, Capsule is able to multiplex
CPU resources across multiple players, even better than multiplex-
ing GPU resources. This is because Capsule is able to achieve higher
cross-player-sharing for CPU computation than for GPU compu-
tation, e.g., Capsule consumes ~20% CPU with zero players, ~32%
with one player, ~33% with two players, and so forth until only
~40% (up to 50%, briefly) with nine players (9p).

Similar trend holds for VRAM (Figure 6(c)-(d)) and RAM re-
sources (Figure 6(g)-(h)). Figure 6(c) shows sublinear VRAM foot-
print with Capsule while it is clearly linear with Baseline in Fig-
ure 6(d). Figure 6(g) shows sublinear RAM footprint, even more
sublinear than in the VRAM, while the Baseline imposes linear
per-player RAM resource footprint.

We also evaluated Capsule and Baseline with two GPUs on Du-
ALGPU workstation. For Baseline, we created three processes that
use GPU1 and another three processes that use GPU2. For Capsule,
we use a single process, but in the game engine that runs in that
process four players get assigned to GPU1 and the other four get
assigned to GPU2. Thus, there are eight players in DuaLGPU.

Figure 7 shows the results on DuALGPU workstation where Base-
line hits the GPU bottleneck (unlike in Figure 6). However, this time,
Capsule brings only 33% benefit, i.e., it supports up to four players
while Baseline supports at most three (with 30 FPS). Capsule is more
effective on SINGLEGPU workstation than on DuALGPU worksta-
tion because the former’s GPU is significantly (>60%) stronger: RTX
4090 with 16,384 CUDA cores of 2.2 GHz clock frequency on the

Capsule: Efficient Player Isolation for Datacenters

Preprint, Under review, 2025

— Op— 1p 2p—— 3p—— 4p — 6p2g 8p2g
GPU VRAM CPU RAM
3 a c e
2100] @ i (© (e) ©
2 N~
> 80-M
3
s 601
o
E 40-MAM
= 201 ==
=) | T s e |
0 ; ; ;
9 b d f h
£ O (@) 0) ()
et N
g 80 T~
b
o 601
@ r— N —————e—
H 40_W]
= 207
> 0 i i i i ‘ ‘ ‘ i i
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time (s) Time (s) Time (s) Time (s)

Figure 7: System-wide utilizations with Capsule and Baseline on DuaLGPU workstation.

former vs. RTX 3090 with 10,496 CUDA cores of 1.4 GHz clock fre-
quency on the latter. Capsule, primarily being a GPU multiplexing
technique, has less room to shine with the weaker GPU. Thus, a
GPU becomes bottleneck with four players in Capsule (three play-
ers in Baseline) on DUuALGPU workstation while that bottleneck
is hit with nine players in Capsule (four players in Baseline) on
SINGLEGPU workstation.

Figure 7(a) shows GPU utilizations with up to eight players on
two GPUs (8p2g) with Capsule and Figure 7(b) shows up to six
players (6p2g) with Baseline. Note that GPU and VRAM utilizations
in Figure 7 are the average of both GPUs at any given time. We
capture system-wide utilizations, which include background OS
processes. Thus, in these experiments, GPU1 has higher GPU and
VRAM usage compared to GPU2 due to background processes
running on GPU1. Therefore, when we take averages across two
GPUgs, per-player averages become lower than that of the players’
in single GPU experiments. For example, in Figure 7(d), 3p VRAM
utilization with Baseline is ~53% while it is ~48% in 6p (from the
average of two GPUs). This means 53-48~5% VRAM utilization was
due to background processes. Similar background overhead applies
to all other multi-GPU experiments.

Figure 7 findings are consistent with the ones from Figure 6.
Figure 7(a) shows sublinear multiplayer resource footprint for GPU
resource, i.e., it starts with ~37% utilization with one player (1p),
reaching ~100% on single GPU with four players (4p), and reaching
~100% on two GPUs with eight players (8p2g). On the other hand,
with Baseline (Figure 7(b)), GPU utilization is ~37% with one player
(1p), reaching ~100% with three players on single GPU (3p), and
reaching ~100% with six players on two GPUs (6p2g). This sublin-
earity is even more evident for VRAM resource (Figure 7(c)-(d)),
i.e., it grows only ~9% points with Capsule (*22% in 1p vs. #31%
in 4p in Figure 7(c)) vs. #28% points with Baseline (*25% in 1p vs.
~53% in 3p in Figure 7(d)).

As Figure 7(e)-(h) show, additional players also have sublinear
CPU and RAM footprints with Capsule, as expected. For example,
Baseline uses ~60% point additional CPU cycles (220% in 1p vs.
~80% in 6p2g in Figure 7(f)) and ~10% point additional RAM to go
from one player to six players (*32% in 1p vs. 42% in 6p2g in Fig-
ure 7(h)). However, Capsule needs less than 11% (vs. Baselinex~60%)
point additional CPU cycles (=18% in 1p vs. #29% in 8p2g in Fig-
ure 7(e)) and ~4% (vs. Baseline~10%) point additional RAM (32% in
1p vs. 35% in 8p2g in Figure 7(g)) to go from 1 player to 8 players.

Figure 8 shows the results on QUuADGPU workstation.? The num-
ber of players hosted in Baseline and Capsule is similar as in the
DuaLGPU workstation, as workstations have comparable GPUs,
i.e., RTX 3090 and Fortis yield comparable performance in ExHIBI-
TION application. QUADGPU workstation has four GPUs and has
a very powerful CPU. We allocate players across multiple GPUs.
Each GPU can accommodate up to four players with Capsule and
only three players with Baseline (with 30 FPS). Thus, as shown in
Figure 8(a), Capsule can host up to 16 players on four GPUs (16p4g)
before the system becomes GPU bottleneck.

As Figure 8(a)-(b) show, additional players consume sublinear
GPU resource with Capsule. For example, Baseline uses *65% point
additional GPU (x30% in 1p vs. #95% in 6p2g in Figure 8(b)) to
go from one player to six players, while Capsule needs ~67% (vs.

2With Baseline, we should have been able to host up to 12 players on four GPUs, but we
show only up to six players in Figure 8. We actually were able host eight players. GPU
driver crashes with an unexpected error when launching the ninth players. We exclude
the third, partially utilized GPU, from Figure 8 to avoid inconsistency in averaging. As
explained earlier, we report average GPU utilizations for our multi-GPU workstations.
This assumes that all GPUs host equal number of players. This is not the case when
the third GPU hosts only two players (before GPU crash) while there are three players
on first and three players on second GPUs. Therefore, in Figure 8, we exclude (two
players on) GPU3 from our calculations and just average the utilizations for six players
(6p) on GPU1 and GPU2. We believe the conclusions we draw are still valid after GPU3
exclusion because our conclusions rely on cross-GPU averages. Even if GPU3 (and
further GPU4) did not crash, and we would still get three players on those GPUs,
Baseline accommodating one less player per GPU than Capsule, just like in GPU1 and
GPU2. Thus, our conclusions would still hold.

Preprint, Under review, 2025

Zhouheng Du, Nima Davari, Li Li, Wei Sen Loi, Nodir Kodirov

— Op— 1p 2p— 3p—— 4p — 6p2g 8p2g —— 12p3g 16p4g
GPU VRAM CPU RAM
e a C e
£ .00] @ (©)) ©
2 ~~
a 80-\/\le
Q.
g 60_\’_/\//\/‘//.’—/\—
o
s 40-—_,\/-/‘—/"_"'—
T 201
9 b d f h
200 © @ 0) (h)
S o7zt SR
£ 80/
b
o 601 ,_,-_——_,-—/\,v_\/_’\
)
E 40-W |
= 201
2 0 i ; ; . j . ‘ ‘ ‘ ; ; ;
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time (s) Time (s) Time (s) Time (s)

Figure 8: System-wide utilizations with Capsule and Baseline on QuapGPU workstation.

Baseline~65%) point additional GPU (~30% in 1p vs. *97% in 16p4g
in Figure 8(a)) to go from one player to 16 players. Similar sublin-
earity holds in VRAM, CPU, and RAM resources:

e VRAM: Baseline uses ~26% point additional VRAM (~20%
in 1p vs. ~46% in 6p2g in Figure 8(d)) to go from one player
to six players, while Capsule needs ~2% (vs. Baselinex~26%)
point additional VRAM (x20% in 1p vs. #22% in 16p4g in
Figure 8(c)) to go from one player to 16 players.

e CPU: Baseline uses ~51% point additional CPU (~8% in 1p
vs. ~#59% in 6p2g in Figure 8(f)) to go from one player to six
players, while Capsule needs ~11% (vs. Baselinex~51%) point
additional CPU (=8% in 1p vs. #19% in 16p4g in Figure 8(e))
to go from one player to 16 players.

e RAM: Baseline uses ~6% point additional RAM (~10% in 1p
vs. #16% in 6p2g in Figure 8(h)) to go from one player to six
players, while Capsule needs ~2% (vs. Baselinex~6%) point
additional RAM (x10% in 1p vs. #12% in 16p4g in Figure 8(g))
to go from one player to 16 players.

We also evaluated Capsule in multi-server setup by connecting
DuaLGPU and QUADGPU in a cluster. We were able to replicate
our results from Figure 7 and Figure 8, i.e., 8 players on the former
workstation and 16 players on the latter one. All 24 players were
connected to the same game server and they had smooth gameplay
with 30 FPS, as expected. Thus, we believe Capsule’s sublinearity
benefits will remain applicable to datacenters of larger scales.

6 Discussion

Capsule has some limitations, which can be further improved. For
example, transparency requirement (R1) has two aspects: func-
tional and performance. Functional aspect refers to the gameplay
experience, e.g., if two players are in the same game session and
are colocated on the same engine and the same GPU, one player
jumping should not interfere with the other player’s jump. This is

the essential part of the R1. Capsule and process-level-isolation,
which we used as the baseline, satisfy this requirement. There is
also performance aspect, e.g., one player exhaustively using GPU
resources by frequent jumps should not reduce FPS for the second
player. This is often called noisy-neighbour problem in cloud [No-
vakovi¢ et al. 2013]. Process-level-isolation does not satisfy this
requirement. Neither does Capsule, at least as implemented now.
Performance transparency, or performance isolation, in the cur-
rent Capsule implementation is achieved in an indirect way: player
rate-limiting after worst-case-analysis. When the game is deployed
in cloud, the game goes through offline performance profiling. The
profiler outputs the FPS range this specific GPU sustained during
an exhaustive gameplay, similar to code-coverage-based analysis
in software engineering [Grechanik et al. 2012]. We then do the
worst-case-analysis, i.e., derive the maximum number of players
this GPU can host in the worst case, which is when all players
perform graphics-heavy operations, concurrently. For example, if
profiler outputs FPS=[130-150] range after the offline analysis, and
the game developer requires at least 30 FPS for smooth gameplay,
we deploy at most 130/30~4 players on this GPU. We repeat offline
profiling and analysis for each GPU flavor in the cloud. Some GPU
flavors might get disqualified altogether for this application if they
cannot offer the minimum developer-required FPS even for 1 player.
Although indirectly achieving performance transparency works,
in the future, we would like to explore way of achieving it directly.
In this exploration, our guiding principle would be maintaining
lightweightness (R3) because unless done with care, stronger per-
formance isolation mechanisms add non-trivial overhead, as com-
monly known as the virtualization tax [Keller et al. 2010].
Capsule also introduces player fate-sharing, which might de-
grade player fault-tolerance. For example, when a server GPU fails,
all players running on the game engine hosted on that GPU also
fail. Process-level-isolation also suffers this limitation. Fate-sharing

Capsule: Efficient Player Isolation for Datacenters

is not about a player causing a GPU failure (or any system compo-
nent failure), but is about hardware failures themselves. Without
Capsule, there is only one player per game engine, one engine per
GPU, and the GPU failure impacts only that single player. However,
fate-sharing is an inherent problem, i.e., the moment we decide to
multiplex GPU resources across players we accept fate-sharing; just
like students share a bus ride everyday: a broken bus delays every-
one’s school arrival. Fate-sharing is also common and inevitable in
cloud: VMs, containers, lambdas all suffer it (Figure 2), e.g., when a
server fails, all VMs hosted on that server fail. The disadvantages of
the fate-sharing can be ameliorated by other mechanisms, such as
player migration with player state replication, as it has been done
for VMs over 20 years ago [Clark et al. 2005].

7 Related Work

The concept of accommodating multiple players on the same game
engine is already well established under the term Local Multi-
player [Karhulahti and Grabarczyk 2021]. Before online multiplayer
became prevalent, multiplayer games were mostly played offline
on the same console where the screen would be divided between
the players [Nintendo EAD 1992; Rare 1997]. Each player would
either have their own controller (connected to the same console)
or share a subset of keys on the same keyboard. Exclusive audio
or mouse control was seldom an option. While local multiplayer
games are still popular [Ghost Town Games and Team17 Digital
Ltd. 2020; Hazelight Studios 2021; Larian Studios 2023] and have
support in many modern game engines [Epic Games sent; Godot
Engine community and Godot Foundation sent; Unity Technolo-
gies sent], the majority of games only support multiplayer over
the network, which we call network multiplayer games. Network
multiplayer approach relaxes input devices sharing, display, and
other restrictions, such as supporting larger number of players.
However, a common limitation of all network multiplayer games is
the inability to reuse compute and memory across players, which
was possible with on-the-same-console approach.

With cloud gaming becoming viable in the last decade, many
platforms now provide remote servers to host games on the cloud
[Microsoft 2019; NVIDIA 2015; Sony Interactive Entertainment
2022]. To share powerful cloud server resources between multiple
players, cloud providers might virtualize and partition the hardware,
e.g., GPU and CPU, granting only a slice of these (virtual) resources
to each player [NVIDIA 2020, 2025]. The cross-player isolation
is often provided by running each game session on a separate
virtual machine (VM) [NVIDIA 2025a,b]. However, just like pre-
cloud networked multiplayer games, the VM-based approaches lack
cross-player compute and memory reuse ability.

Cross-player sharing concept is also used in the game servers [Lu
et al. 2006]. A game server manages many players at the same time,
but that server mostly coordinates cross-player state, e.g., synchro-
nize actions, inventories, and progress. Clients still render frames
by themselves, owning their hardware or using remote hardware.
On the other hand, Capsule strives to achieve the efficiency (R4) of
the on-the-same-console multiplayer games in the cloud environ-
ment, without imposing screen size, input, and other restrictions. In
fact, Capsule does so without compromising transparency (R1) and
compatibility R2, using a lightweight (R3) isolation mechanism.

Preprint, Under review, 2025

8 Conclusion

We designed, implemented, and evaluated Capsule: an efficient
in-game-engine player isolation mechanism. Our implementation
in a popular open source game engine, O3DE, shows that Cap-
sule is application agnostic. We ported four existing applications to
Capsule-based O3DE without application changes. Our experiments
with these applications, three servers with different hardware spec-
ifications, including multi-GPU servers and multi-server cluster,
show that Capsule can increase datacenter resource-GPU, VRAM,
CPU, RAM-utilizations by accommodating up to 2.25x more play-
ers. This is the product of Capsule using up to 1.43x less GPU, 3.11x
less VRAM, 3.7x less CPU, and 3.87x less RAM compared to the
baseline. Capsule design can be adopted by other game engines to
increase datacenter utilization across cloud providers.

Acknowledgments

Thanks to Xiaofeng Zhang, Wenxiao Zhang, Steven Yuan, Yin Wei,
and people at Huawei Cloud for their support.

References

AWS. 2025. Amazon Elastic Compute Cloud. Retrieved September 17, 2025 from
https://aws.amazon.com/ec2

Azure. 2025. Azure Functions. Retrieved September 17, 2025 from https://azure.
microsoft.com/en-us/products/functions

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 164-177. https://doi.org/10.1145/1165389.
945462

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual machines.
In Symposium on Networked Systems Design & Implementation (NSDI'05). USENIX
Association, USA, 273-286.

Epic Games. 1998-present. Unreal Engine. https://www.unrealengine.com/ Game
development engine with native support for multiplayer, including tools for local
split-screen in 3D environments, often implemented using C++ or Blueprints visual
scripting..

Ghost Town Games and Team17 Digital Ltd. 2020. Overcooked! All You Can Eat. Video
Game. Initial release for PlayStation 5 and Xbox Series X/S on November 10-12,
2020. A compilation featuring the remastered contents of the first two games and
all DLC..

Godot Engine community and Godot Foundation. 2014-present. Godot Engine. https:
//godotengine.org/ Free and open-source game engine supporting local multiplayer
with configurable split-screen modes, utilizing its built-in input and viewport
management systems..

Google. 2025. Containers at Google Cloud. Retrieved September 17, 2025 from https:
//cloud.google.com/containers

Mark Grechanik, Chen Fu, and Qing Xie. 2012. Automatically finding performance
problems with feedback-directed learning software testing. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE). 156-166. https://doi.org/10.1109/
ICSE.2012.6227197

Hazelight Studios. 2021. It Takes Two. Video Game. Platform: Multi-platform (PS4, PS5,
Xbox One, Xbox Series X/S, PC, Switch); Co-op only action-adventure platformer
featuring permanent local and online split-screen..

Gernot Heiser. 2025. Systems Benchmarking Crimes. Retrieved September 25, 2025
from https://gernot-heiser.org/benchmarking-crimes.html

Veli-Matti Karhulahti and Pawel Grabarczyk. 2021. Split-Screen: Videogame History
Through Local Multiplayer Design. Design Issues 37, 2 (04 2021), 32-44. https:
//doi.org/10.1162/desi_a_00634

Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. 2010. NoHype: virtualized
cloud infrastructure without the virtualization. In Proceedings of the 37th Annual
International Symposium on Computer Architecture (Saint-Malo, France) (ISCA °10).
Association for Computing Machinery, New York, NY, USA, 350-361. https://doi.
org/10.1145/1815961.1816010

Larian Studios. 2023. Baldur’s Gate 3. Video Game. Platform: Multi-platform (PC, PS5,
Xbox Series X/S); Features two-player local split-screen co-op for the entire main
campaign, with a persistent world and narrative consequences..

Fengyun Lu, Simon Parkin, and Graham Morgan. 2006. Load balancing for massively
multiplayer online games. In Proceedings of 5th ACM SIGCOMM Workshop on
Network and System Support for Games (Singapore) (NetGames "06). Association for

https://aws.amazon.com/ec2
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://www.unrealengine.com/
https://godotengine.org/
https://godotengine.org/
https://cloud.google.com/containers
https://cloud.google.com/containers
https://doi.org/10.1109/ICSE.2012.6227197
https://doi.org/10.1109/ICSE.2012.6227197
https://gernot-heiser.org/benchmarking-crimes.html
https://doi.org/10.1162/desi_a_00634
https://doi.org/10.1162/desi_a_00634
https://doi.org/10.1145/1815961.1816010
https://doi.org/10.1145/1815961.1816010

Preprint, Under review, 2025

Computing Machinery, New York, NY, USA, 1-es. https://doi.org/10.1145/1230040.
1230064

Microsoft. 2019. Xbox Cloud Gaming. https://www.xbox.com/en-US/play Service
launched in beta in 2019.

Microsoft. 2025. About Performance Counters. Retrieved September
25, 2025 from https://learn.microsoft.com/en-us/windows/win32/perfctrs/about-
performance-counters

Nintendo EAD. 1992. Super Mario Kart. Video Game. Platform: Super Nintendo
Entertainment System (SNES); Features a two-player local multiplayer mode..

Dejan Novakovi¢, Nedeljko Vasi¢, Stanko Novakovi¢, Dejan Kosti¢, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying and Managing Perfor-
mance Interference in Virtualized Environments. In 2013 USENIX Annual Tech-
nical Conference (USENIX ATC 13). USENIX Association, San Jose, CA, 219-230.
https://dl.acm.org/doi/10.5555/2535461.2535489

NVIDIA. 2015. GeForce NOW. https://www.nvidia.com/en-us/geforce-now/ Service
launched in 2015 as NVIDIA GRID; rebranded as GeForce NOW in 2017.

NVIDIA. 2020. NVIDIA Multi-Instance GPU and NVIDIA Virtual Com-
pute Server: GPU Partitioning. Technical Report TB-10226-001_vO01.
NVIDIA. https://www.nvidia.com/content/dam/en-zz/Solutions/design-

visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-
GPU-NVIDIA-Virtual-Compute-Server.pdf Technical Brief.
NVIDIA. 2025a. Frequently Asked Questions (FAQs) for GeForce NOW. Retrieved
September 25, 2025 from https://www.nvidia.com/en-us/geforce-now/faq
NVIDIA. 2025b. NVIDIA RTX Virtual Workstation. Retrieved September 25, 2025 from
https://www.nvidia.com/en-us/design-visualization/virtual-workstation
NVIDIA. 2025¢c. NVIDIA vGPU Software (RTX vWS, vPC, vApps). Retrieved September
25, 2025 from https://www.nvidia.com/en-us/drivers/vgpu-software-driver
NVIDIA. 2025. NVIDIA Virtual GPU (vGPU) Technology. https://www.nvidia.com/en-
us/data-center/virtual-gpu-technology/ Accessed through the official NVIDIA

Zhouheng Du, Nima Davari, Li Li, Wei Sen Loi, Nodir Kodirov

Data Center documentation for the virtualization solution..

O3DE. 2025a. MultiplayerSample Project. Retrieved April 23, 2025 from https://github.
com/o03de/o3de-multiplayersample

O3DE. 2025b. Open 3D Engine. Retrieved April 23, 2025 from https://github.com/o3de/
o3de

Pratyush Patel, Zibo Gong, Syeda Rizvi, Esha Choukse, Pulkit Misra, Thomas Anderson,
and Akshitha Sriraman. 2023. Towards Improved Power Management in Cloud
GPUs. IEEE Computer Architecture Letters 22, 2 (2023), 141-144. https://doi.org/10.
1109/LCA.2023.3278652

Harry Petty, Ivan Goldwasser, and Pradyumna Desale. 2023. One Giant Superchip for
LLMs, Recommenders, and GNNs: Introducing NVIDIA GH200 NVL32. Retrieved
April 23, 2025 from https://developer.nvidia.com/blog/one- giant- superchip-for-
llms-recommenders-and- gnns-introducing- nvidia- gh200-nv132

Rare. 1997. GoldenEye 007. Video Game. Platform: Nintendo 64 (N64); Features
four-player local split-screen competitive multiplayer (deathmatch)..

Sony Interactive Entertainment. 2022. PlayStation Plus Premium. https://www.
playstation.com/en-us/ps-plus/ Tier launched as part of the new PlayStation
Plus in 2022.

Unity. 2025. ECS for Unity. Retrieved April 23, 2025 from https://unity.com/ecs

Unity Technologies. 2005-present. Unity. https://unity.com/ Game development
engine supporting 2D and 3D local multiplayer and split-screen functionality via
the New Input System and multiple cameras..

Alexander Weinrauch, Wolfgang Tatzgern, Pascal Stadlbauer, Alexis Crickx, Jozef
Hladky, Arno Coomans, Martin Winter, Joerg H. Mueller, and Markus Steinberger.
2023. Effect-based Multi-viewer Caching for Cloud-native Rendering. ACM Trans.
Graph. 42, 4, Article 87 (July 2023), 16 pages.

Wikipedia. 2013. Entity Component System. Retrieved April 23, 2025 from https:
//en.wikipedia.org/wiki/Entity_component_system

https://doi.org/10.1145/1230040.1230064
https://doi.org/10.1145/1230040.1230064
https://www.xbox.com/en-US/play
https://learn.microsoft.com/en-us/windows/win32/perfctrs/about-performance-counters
https://learn.microsoft.com/en-us/windows/win32/perfctrs/about-performance-counters
https://dl.acm.org/doi/10.5555/2535461.2535489
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/en-us/geforce-now/faq
https://www.nvidia.com/en-us/design-visualization/virtual-workstation
https://www.nvidia.com/en-us/drivers/vgpu-software-driver
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://github.com/o3de/o3de-multiplayersample
https://github.com/o3de/o3de-multiplayersample
https://github.com/o3de/o3de
https://github.com/o3de/o3de
https://doi.org/10.1109/LCA.2023.3278652
https://doi.org/10.1109/LCA.2023.3278652
https://developer.nvidia.com/blog/one-giant-superchip-for-llms-recommenders-and-gnns-introducing-nvidia-gh200-nvl32
https://developer.nvidia.com/blog/one-giant-superchip-for-llms-recommenders-and-gnns-introducing-nvidia-gh200-nvl32
https://www.playstation.com/en-us/ps-plus/
https://www.playstation.com/en-us/ps-plus/
https://unity.com/ecs
https://unity.com/
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system

	Abstract
	1 Introduction
	2 Requirements
	3 Design and Implementation
	4 Methodology
	5 Evaluation
	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

