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 (a) 1 Player (1p)

 (d) 1 Player (1p)

 (g) 1 Player (1p)

 (b) 2 Player (2p)

 (e) 4 Player (4p)

 (h) 9 Player (9p)

(c)

(f)

(i)

Figure 1: Three examples demonstrate applicability of Capsule to wide range of graphics intensive applications: 1) high-graphics:
Paris Opera House to experience a digital twin of Paris Opera House (top); 2) medium-graphics: O3DE Multiplayer Sample,

a shooting game (middle); 3) low-graphics: Exhibition to experience digital twin of a museum (bottom). Capsule achieves high

datacenter resource utilization–GPU, VRAM, CPU, RAM–while providing lightweight and efficient player-isolation.

Abstract

Cloud gaming is increasingly popular. A challenge for cloud provider

is to keep datacenter utilization high: a non-trivial task due to ap-

plication variety. These applications come in different shapes and

sizes. So do cloud datacenter resources, e.g., CPUs, GPUs, NPUs.

Part of the challenge stems from game engines being predominantly

designed to run only one player. For example, one player in a light-

weight game might utilize only a fraction of the cloud server GPU.

The remaining GPU capacity will be left underutilized, an undesired

outcome for the cloud provider.

We introduce Capsule, a mechanism to seamlessly share one

GPU, and other cloud servers resources, across multiple players.

Sharing makes the cost of multiple players sublinear. We imple-

mented Capsule in O3DE, a popular open source game engine.

Our evaluations show that Capsule increases datacenter resource

utilization by accommodating up to 2.25x more players, without

degrading player gaming experience. This is the product of Capsule

using up to 1.43x less GPU, 3.11x less VRAM, 3.7x less CPU, and

3.87x less RAM compared to the baseline. Capsule is also application

agnostic. We ran four applications on Capsule-based O3DE with

no application changes. Our experiences with four applications,

three servers with different hardware specifications, including the

one with four GPUs, and multi-server cluster show that Capsule

design can be adopted by other game engines to increase datacenter

utilization across cloud providers.

CCS Concepts

•Computer systems organization→ Cloud computing; Real-time
system architecture; • Computing methodologies→ Graphics

systems and interfaces.

1 Introduction

Cloud gaming is attractive for players as well as cloud providers.

For players, it alleviates the deployment cost. They no longer have
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to own the latest hardware (e.g., GPU) to play the game in high

quality. Cloud already hosts the latest hardware, sometimes before

they become publicly available [Petty et al. 2023]. For providers, it

is about generating revenue while delivering the highest gaming

quality. Higher the cloud datacenter utilization, higher the revenue.

However, it is challenging to achieve high datacenter utilization

with gaming applications. Part of the challenge arises from games

having diverse shapes and sizes. Shapes correspond to diverse re-

sources games consume, such as CUDA cores, RT cores, and Tensor

cores in GPUs, in addition to the host CPU and RAM. Sizes corre-

spond to the differing amount of these resources games consume,

e.g., a graphics-intensive game consumes the entire GPU while a

graphics-light game consumes only a fraction of that GPU. An-

other challenge arises from datacenters having diverse hardware.

A datacenter has servers with several generations of CPUs and

GPUs [Patel et al. 2023]. For example, a server with the oldest GPU

can accommodate only one player while with the latest GPU accom-

modates dozen players. Thus, cloud providers need a mechanism

to share GPU, and other resources, across multiple players.

Games are not the only kind of cloud application that require

server resource multiplexing. Other cloud workloads do too and

resource virtualization has been the primary solution for over 20

years [Barham et al. 2003]. Broadly, there are three virtualization

categories: Virtual Machines (VM) [AWS 2025], containers [Google

2025], and lambdas [Azure 2025], as shown in Figure 2. The con-

tainer approach is well-fit for games because (1) it does not require

knowing the application semantics, which makes the solution ap-

plicable to wide range of games, and (2) it does not impose high

overhead, i.e., multiplexing mechanism itself consumes insignifi-

cant resources, e.g., CPU cycles. Lambdas suffer (1) and VMs suffer

(2). How does container-like multiplexing solution look like for

gaming applications?

We propose player-level multiplexing. A player in the graphics-

heavy application will continue consuming the entire GPU. How-

ever, when a GPU has sufficient capacity to accommodate two or

more players in a multiplayer game, GPU resources will be multi-

plexed across these players. We designed, implemented, and evalu-

ated Capsule: an in-game-engine player isolation mechanism

for multiplayer games. Capsule also allows cross-player sharing.
For example, when two players enter a room and have a shared

game asset in their view, we can reuse the asset geometry across

these two players, without players noticing. Sharing offers cloud

providers with sublinear resource usage growth for linear player

increase: the phenomena we call sublinear resource footprint.
We implemented Capsule in O3DE, a popular open source game

engine [O3DE 2025b]. Our evaluations show that Capsule-based

O3DE can increase datacenter resource utilization by accommodat-

ing up to 2.25x more players, without degrading player experience.

Capsule is also application agnostic. We ran four applications on

Capsule with no application changes. Our experiences show that

Capsule design is generalizable and can be adopted by other engines

to increase datacenter utilization across cloud providers.

2 Requirements

There are four requirements for a player-isolation mechanism in

cloud, in order of their importance:

Figure 2: Existing isolation mechanisms in the cloud. Lamb-

das are lightweight but require knowledge of application

semantics. Virtual Machines are agnostic to semantics but

are heavyweight. The container approach strikes the right

balance for gaming applications.

• R1: Transparent: Players should be unaware of other play-

ers sharing cloud resources. A player experience, such as, in-

put latency, output streaming quality, and frames-per-second

(FPS), should not degrade due to other players.

• R2: Compatible: Player isolation should not require signif-

icant changes to run existing applications, best if no appli-

cation changes are required. The workflow for developing

a new application should also remain near identical, if not

exactly identical.

• R3: Lightweight: Isolation mechanism itself should not

consume significant system resources, e.g., CPU and RAM.

• R4: Efficient: Maximize cross-player sharing. For example,

resource (e.g., CPU) footprint of the second player should be

less than that of the first player because the second player

can reuse some computation results from the first player.

Capsule satisfies all four requirements. However, for example,

the process-level-isolation would satisfy R1 and R2, but violate

R3 and R4. The process-level-isolation is achieved when we sim-

ply run separate game engine process in a cloud server for each

player. R3 is violated because spawning and managing separate OS

process is not as lightweight as handling all computation within

the same process. R4 is violated because players are unable to

share computation results, which is the by-product of the process-

level-isolation by design because the OS processes operate on a

separate memory address (unless another mechanism is used for

cross-process-memory-sharing). See Section 6 for further discus-

sion of functional and performance transparency (R1).

3 Design and Implementation

We designed Capsule to satisfy all four aforementioned require-

ments. Figure 3 shows Capsule architecture, along with other es-

sential modules in cloud deployment. Capsule is a new module in

O3DE. Capsule communicates with different system components,

such as audio system, input system, rendering system (includes

both audio and video rendering), and game logic (event system).

Capsule leverages Entity–Component–System (ECS), an existing

game engine architecture [Wikipedia 2013]. ECS makes it conve-

nient to represent game world objects. An ECS-based game engine

contains entities that have data components and systems to oper-

ate on those components. This architecture is widely adopted by

modern game engines [Unity 2025], including O3DE.

As shown in Figure 3, players connect to the cloud over the wide

area network, e.g., Internet. Players’ entry point is the Streaming
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Figure 3: Capsule-based cloud architecture. Capsule provides player isolation by relying on Capsule Storage for player state

management.

module, which creates a separate game session for each player,

isolating their inputs, such as keyboard and mouse, and outputs,

such as video streams. The Streaming module passes the player-

specific input to a separate game session, which includes player-

specific UI, Rendering, Input, Audio, and Encoding states. These

states are reflected in the game, but are managed inside the engine.

In other words, application will perceive all player-specific states

to be isolated from each other at the engine level, i.e., as if each

player (or in fact, each game instance) has an engine of its own. In

Capsule-based O3DE, all of these players share one engine.

Capsule distinguishes different players’ input, output, and be-

haviours by using Capsule Storage. Capsule Storage manages two

constructs: entities and events. Entities are game objects, such as a

car, a light, an avatar. Events, or gameplay events, include in-game

events, such as running, jumping, exploding. They are predesigned

by the game developer and are written in the game script. Entities

and events determine the behavior of each player and of the global

environment. They also determine the final rendered frame.

As shown in Figure 3, Capsule has two types of Storage: global

and local. There is only one global storage in the entire engine. All

players share the entities and events inside the global storage. There

are one or more local Capsule Storages, one for each player. Entities

inside the local storage are visible only to storage-owner-player

except for the player controlled network entities, such as the player

avatar whose state is shared with other players. For example, when

a player jumps, that avatar jump should be visible to everyone.

Per-player events are contained within the local storage. Capsule

isolates player-specific tasks at runtime by directing player-specific

entities and events to the respective player-owned local storage.

Figure 4 shows how Capsule handles per-player entity track-

ing using global and local storage. There are seven kinds of con-

structs, starting with Predefined Global Entity and ending with

Player Controlled Network Entity. Not all of these constructs are

exposed to the game developer. In fact, the game developers design

games as if they did for vanilla (non-Capsule) O3DE, e.g., declare

an entity as Network Entity (such as a museum piece in Exhibi-

tion) or Player Controlled Network Entity (such as a player avatar).

Capsule manages entity division into local and global, as well as

reference tracking. For example, when there are no players, there

are no constructs. Optionally, Capsule could automatically create

and maintain a game level cache to accelerate game loading when

players join. This cache is invisible to the game.

As Figure 4 shows, players join through API calls from the

Streaming module (see Figure 3). When the API call is made for

the first player, predefined global entities are initialized, unless

they have already been initialized via cache. During player join, all

entities that the game developer specified in the initial level are

spawned. For subsequent players, predefined global entities are not

re-instantiated, instead, references to the original entities are cre-

ated within each subsequent player’s local storage. These references

ensure that the player local gameplay logic remains consistent with

the vanilla game-level design (for non-Capsule engine).

When the second player joins, local entities are duplicated for

each player. A corresponding reference for each duplicate is main-

tained in the global storage. This reference mechanism ensures

that player-specific gameplay logic is consistent with the vanilla

design. Network entities, i.e., entities whose state and logic must

be synchronized through the game server [Lu et al. 2006], are typi-

cally treated as global entities since network entities are inherently

shared among players. Such treatment is consistent with legacy

multiplayer architecture.

Event tracking follows analogous flow as the entity tracking.

There are global events, such as time-of-the-day change in Paris

Opera House, and local events, such as bullet inventory decrease

after player shots in O3DEMultiplayer Sample. These distinctions

also apply to the event storage, which also separates global and

local scopes. Global events may trigger both global and local events,

whereas local events are restricted to interactions within the same

local event storage. For example, time-of-the-day change event

affects all players, whereas a local inventory-update event should

remain confined to that player’s local storage.

A notable exception arises with player-controlled network enti-

ties, e.g., the entity that is labelled with “Dynamically Added from

Game Server” in Figure 4. This entity is globally visible across all

players, thereby functioning as a global entity, but its event propaga-

tion is restricted to local event storage. For instance, a player press-

ing the “attack” command generates its own animations and state

changes without broadcasting to other players. However, when
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Figure 4: Player entity tracking using global and local Cap-

sule storage. Global storage is instantiated only once. Local

storage is created as players join and is destroyed when they

leave the game.

this action results in interactions with other players (e.g., a colli-

sion), the corresponding events are escalated to the game server

and synchronized globally, making these events visible to other

players. This local-propagation-until-interaction approach ensures

that player inputs remain isolated, while cross-player interactions

get broadcasted across the entire shared game world.

We designed Capsule Storage (Figure 4) and Capsule architecture

(Figure 3) with generality in mind. Most of the Capsule changes

lies on either the ECS layer or the input and output systems of

the game engine. This design maintains compatibility with other

sub-systems, such as the rendering and physics systems. Therefore,

it is possible, and in fact, it is encouraged, to replace these systems

with multi-player-aware alternatives, without modifying Capsule.

For example, a related work, On Surface Caches (OSC) [Weinrauch

et al. 2023], caches and reuses the computed color values of the

same world position across multiple players. The default O3DE

rendering sub-system can be replaced with OSC-like alternative to

further improve cross-player-sharing, without changing Capsule.

We ported four applications to Capsule-based O3DE to validate

our design. All four applications nicely fit within our entity and

event tracking systems. Figure 1 shows three of them for brevity.

Our experience with these four applications show that Capsule-

based O3DE is fully compatible (R2) with non-Capsule O3DE. No

changes were required to these applications. Moreover, the work-

flow for further development of these applications on Capsule-based

O3DE was identical to that of non-Capsule O3DE.

Capsule design principles can be easily adopted in other game

engines thanks to ECS architecture. We also believe that four de-

sign requirements (R1–R4) are the common goals in all cloud

deployments. Thus, our design and implementation decisions are

applicable to other game engines and other cloud environments.

4 Methodology

We evaluated Capsule on diverse datacenter hardware. We used

three different workstations: with one GPU, with two GPUs, and

with four GPUs, as described in Table 1. All workstations run Win-

dows OS to faithfully reproduce our production environment. Cap-

sule implementation exists for Linux OS but is not as thoroughly

performance evaluated as Windows. We believe results we report

here are applicable to Linux environment as well. We fixed the

application FPS to 30, a common minimum threshold. We read

the system-wide utilization levels of GPU, VRAM, CPU, and RAM

resources every second. The value on each second is the average uti-

lization during that one-second interval; consistent with Windows

performance counters [Microsoft 2025].

We compare the cloud server resource consumption of Capsule

against the Baseline. For Baseline, we implemented process-level-

isolation, i.e., a separate game engine process for each player. (We

were unable to use production-level alternative virtualization tech-

niques, such as NVIDIA RTX Virtual Workstation (vWS) [NVIDIA

2025b], for the baseline due toNVIDIA licensing restrictions [NVIDIA

2025c].) In Baseline, we launched the Exhibition game server [Lu

et al. 2006] and then launched game clients one by one, measuring

the server utilizations as players get added. The client-side evalua-

tion is identical between Capsule and Baseline, but on the server

side, after the first player, we keep adding players to the same client

process (running in the cloud server), rather than creating a sepa-

rate process per player (in the cloud server). This is consistent with

the Capsule design in Figure 3.

We evaluated Capsule’s applicability to diverse datacenter work-

loads by running three different applications–Paris Opera House,

O3DE Multiplayer Sample [O3DE 2025a], Exhibition–on Sin-

gleGPU workstation (see Table 1). We monitored resource utiliza-

tion for 40 seconds of gameplay time.

In hardware diversity experiments, we ran Exhibition on three

workstations from Table 1. In these experiments, we compare re-

source utilizations of Capsule and Baselinewith two ormore players.

In each experiment, the gameplay of each player is unique, and is

deterministic across different hardware. It is unique because the
player walking trajectories differ within the same experiment. We

record a stochastic trajectory for each player in a separate experi-

ment and replay that trajectory in Capsule vs. Baseline evaluations.

For example, if there are 4 players in the experiment, each player

trajectory is stochastic. Stochasity makes our evaluations unbiased,

i.e., free from the selective benchmarking crime [Heiser 2025]. The

view the player gets in a frame influences the rendering load for

that frame, which in turn influences how much computation can

be shared across multiple players in that frame. In the biased case,

we would have all players have the same view, or largely over-

lapping view, which would unfairly make Capsule outshine the

Baseline because the amount of cross-player sharing is maximized.

By adopting stochasity, our evaluations are free from such bias. In

fact, stochastic trajectories might undersell the Capsule benefits be-

cause players might inadvertently have less view overlap, hence less

sharing, than they would otherwise have in the realistic, production
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Table 1: Workstations used for Capsule evaluation. All workstations use NVIDIA GPUs. RAM and VRAM values are in GB.

Workstation CPU CPU

Cores

RAM GPU VRAM GPUCount

SingleGPU AMD Ryzen 7 5800X 8 32 GeForce RTX 4090 24 1

DualGPU 13th Gen Intel Core i7-13700K 16 64 GeForce RTX 3090 24 2

QuadGPU AMD Ryzen Threadripper PRO 5975WX 32 256 Fortis
1

24+ 4

deployment. We would rather undersell than be biased. Thus, the

Capsule benefits we report in our experiments are conservative.

The determinism across different hardware allows our experi-

ments stay true to our claim: hardware is different, everything else

is the same. When we evaluate different hardware, we replay the

prerecorded trajectories for the first player, the second player, and

so on. Thus, the player generated rendering load is identical across

all hardware configurations while the number of players accom-

modated might increase (or decrease) depending on the compute

capacity of the hardware under evaluation. This exactly is the pur-

pose of the hardware diversity experiments: evaluate if the Capsule

benefits are consistent across different datacenter hardware.

In general, we chose the strongest viable baseline and compared it

to Capsule. We evaluated on wide range of applications and diverse

datacenter hardware while faithfully replicating our production

environment and remaining bias free.

5 Evaluation

We evaluate how efficiently Capsule accommodates multiple play-

ers. We run three applications on three datacenter servers. We first

evaluate all three applications on SingleGPU workstation, with

the strongest GPU. We then evaluate Exhibition application on

three workstations, and on a multi-server cluster.

Figure 1 shows three applications on SingleGPU workstation.

Figure 1(a) and Figure 1(b) show game server view of Paris Opera

House with single player (1p) and two players (2p), respectively.

Figure 1(c) shows resource utilizations for these two environments.

Unlike other applications used in our experiments, GPU usage in

Paris Opera House has high variance. For example, in some small

intervals, 2p utilization line is below 1p utilization. This is partially

due to the utilization capturing noise, but is mostly due to view

angle of the players. For example, between 25th-28th seconds, if two

players in 2p environment happen to view the corner of the wall,

while the single player in 1p environment views the distant place

with many polygons, 1p GPU utilization will be higher. However,

if we summarize the GPU utilizations across the entire 40-second

gameplay, without focusing on a small time intervals, the average

2p GPU utilization (≈50%) is ≈10% higher than 1p (≈40%). This
is expected: with Capsule, the second player imposes a sublinear

≈10% GPU cost.

This delta is smaller, but is more significant in other resources

(VRAM, CPU, RAM). If the delta is the smallest, i.e., zero, 1p and

2p lines overlap. This means that 2p utilization of that resource is

identical to that of 1p, which means the second player came for free

(for that resource). In Figure 1(c), this is almost the case for VRAM,

1
Exact GPU model is not disclosed. VRAM “24+” means it has more VRAM than the

above two. Fortis is our custom label, means strong in Latin.

Figure 5: Scalability of Capsule as we increase number of

players. Capsule and Baseline host up to 9 and 4 players,

respectively, on the Exhibition application. Capsule accom-

modates up to 2.25x more players thanks to sublinear re-

sources increase per added player.

CPU, and RAM: the second player has a small extra cost. Thus, the

cost of additional players is sublinear for these resources.

Capsule is unable to accommodate more than two players in

Paris Opera House application. The FPS drops below the threshold

(30) with the third player due to CPU bottleneck. This is not visible

in Figure 1(c), i.e., CPU utilization is only ≈30% for 1p as well as 2p.

This is misleading because CPU utilizations are reported and are

plotted for all 8 cores (see SingleGPU workstation in Table 1) while

there is only one main thread for all players, which runs on a single

CPU core. That thread is the bottleneck. We can improve Capsule

performance by spreading players across CPU cores. We have not

done so, yet, because in most games, GPU is the bottleneck (as

evident in our third application, Exhibition). However, extending

Capsule to use different CPU cores for different players is the right

future work to make Capsule applicable to diverse applications.

The sublinear cost conclusion holds in O3DE Multiplayer Sam-

ple [O3DE 2025a] and Exhibition applications, in Figure 1(d)–(f)

and Figure 1(g)–(i), respectively. For example, as shown in Fig-

ure 1(i) for Exhibition application, one player consumes ≈18% of

GPU while 9 players consume around ≈99%: a sublinear per-player
increase. Similarly, CPU consumption increases sublinearly: only by

≈10% point with 9 players (≈29%) vs. one player (≈19%). Note that
O3DE Multiplayer Sample also suffers aforementioned single-

thread bottleneck. Exhibition does not suffer it and therefore can

achieve over 99% GPU utilization for 9 players. These results demon-

strate that Capsule, as it is implemented now, brings greater benefit

to graphics-heavy application, i.e., when GPU is bottleneck. Our

future work will alleviate CPU bottleneck.

Figure 5 shows average resource consumption increase as players

join Exhibition application in Figure 1(h). Note that we adjusted

for the effect of game processes only, by subtracting base utiliza-

tions from the measured values. Capsule supported up to 9 players

without dropping FPS below 30, while baseline sharply dropped to

single-digit FPS after 4 players due to CPU contention. At the peak

of the Baseline (4 players), Capsule used 1.43x less GPU, 3.11x
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Figure 6: System-wide utilizations with Capsule and Baseline on SingleGPU workstation.

less VRAM, 3.7x less CPU, and 3.87x less RAM compared to the

Baseline. Thanks to these savings, Capsule accommodates more

players, beyond the Baseline. As expected, the Baseline resource

consumption increases linearly with the number of players. How-

ever, the increase in Capsule is sublinear thanks to cross-player

sharing, i.e., Capsule requires a sublinear amount of extra VRAM,

CPU, RAM past the first player. This trend also holds in GPU con-

sumption, but since each player has a different view of the scene,

sharing of GPU computation is lower than in other resources. The

GPU utilization benefit of Capsule could be further improved if

the application uses more shareable rendering techniques, such

as shadowmaps, global illumination, and cross-view diffuse and

effects sharing [Weinrauch et al. 2023].

Figure 6 gives a finer view of the Figure 5 experiment by show-

ing per-second resource utilization during 40 second gameplay, for

different number of players. 0P represents the initial state where

the game server and the game client are launched, but no players

are created yet. Results from this diversity evaluation are consistent

with our earlier per-player resource footprint experiment, i.e., Cap-

sule accommodates up to 9 players while Baseline becomes CPU

bottleneck after 4 players. Thus, 2.25x more players with Capsule.

These 2.25x savings are thanks for Capsule’s ability to multiplex

server resources across multiple players. Figure 6(a)-(b) show GPU

utilizations for different number of players. 0p line in Figure 6(a)

shows ≈10% GPU utilization when there are zero players, i.e., only

the game server, an empty game client, and OS background pro-

cesses are running. With 1 player (1p), GPU utilization in Capsule

(Figure 6(a)) is similar to that of Baseline (Figure 6(b)): both are

≈20%. However, as Figure 6(b) shows, with the Baseline, the GPU

utilization reaches up to 37% with two players, up to 62% with three

players, and up to 81% with four players. Thus, each player imposes

linear,≈20% GPU overhead. On the other hand, as Figure 6(a) shows,

with Capsule, the overhead is sublinear: up to 30% with two players,

up to 40% with three players, up to 50% with four players, and so

on until up to 100% with nine players.

The reason we stop with nine players (9p) in Figure 6(a) is be-

cause GPU becomes bottleneck after nine players, which causes

the game FPS to fall below the acceptable threshold (30 FPS). How-

ever, the reason Baseline stops after four players (4p) is the CPU

bottleneck, not the GPU. As Figure 6(f) shows, the CPU becomes a

bottleneck with the fourth player, game dropping below 30 FPS. On

the other hand, as Figure 6(e) shows, Capsule is able to multiplex

CPU resources across multiple players, even better than multiplex-

ing GPU resources. This is because Capsule is able to achieve higher

cross-player-sharing for CPU computation than for GPU compu-

tation, e.g., Capsule consumes ≈20% CPU with zero players, ≈32%
with one player, ≈33% with two players, and so forth until only

≈40% (up to 50%, briefly) with nine players (9p).

Similar trend holds for VRAM (Figure 6(c)-(d)) and RAM re-

sources (Figure 6(g)-(h)). Figure 6(c) shows sublinear VRAM foot-

print with Capsule while it is clearly linear with Baseline in Fig-

ure 6(d). Figure 6(g) shows sublinear RAM footprint, even more

sublinear than in the VRAM, while the Baseline imposes linear

per-player RAM resource footprint.

We also evaluated Capsule and Baseline with two GPUs on Du-

alGPU workstation. For Baseline, we created three processes that

use GPU1 and another three processes that use GPU2. For Capsule,

we use a single process, but in the game engine that runs in that

process four players get assigned to GPU1 and the other four get

assigned to GPU2. Thus, there are eight players in DualGPU.

Figure 7 shows the results on DualGPU workstation where Base-

line hits the GPU bottleneck (unlike in Figure 6). However, this time,

Capsule brings only 33% benefit, i.e., it supports up to four players

while Baseline supports at most three (with 30 FPS). Capsule is more

effective on SingleGPU workstation than on DualGPU worksta-

tion because the former’s GPU is significantly (>60%) stronger: RTX

4090 with 16,384 CUDA cores of 2.2 GHz clock frequency on the
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Figure 7: System-wide utilizations with Capsule and Baseline on DualGPU workstation.

former vs. RTX 3090 with 10,496 CUDA cores of 1.4 GHz clock fre-

quency on the latter. Capsule, primarily being a GPU multiplexing

technique, has less room to shine with the weaker GPU. Thus, a

GPU becomes bottleneck with four players in Capsule (three play-

ers in Baseline) on DualGPU workstation while that bottleneck

is hit with nine players in Capsule (four players in Baseline) on

SingleGPU workstation.

Figure 7(a) shows GPU utilizations with up to eight players on

two GPUs (8p2g) with Capsule and Figure 7(b) shows up to six

players (6p2g) with Baseline. Note that GPU and VRAM utilizations

in Figure 7 are the average of both GPUs at any given time. We

capture system-wide utilizations, which include background OS

processes. Thus, in these experiments, GPU1 has higher GPU and

VRAM usage compared to GPU2 due to background processes

running on GPU1. Therefore, when we take averages across two

GPUs, per-player averages become lower than that of the players’

in single GPU experiments. For example, in Figure 7(d), 3p VRAM

utilization with Baseline is ≈53% while it is ≈48% in 6p (from the

average of two GPUs). This means 53-48≈5% VRAM utilization was

due to background processes. Similar background overhead applies

to all other multi-GPU experiments.

Figure 7 findings are consistent with the ones from Figure 6.

Figure 7(a) shows sublinear multiplayer resource footprint for GPU

resource, i.e., it starts with ≈37% utilization with one player (1p),

reaching ≈100% on single GPU with four players (4p), and reaching

≈100% on two GPUs with eight players (8p2g). On the other hand,

with Baseline (Figure 7(b)), GPU utilization is ≈37% with one player

(1p), reaching ≈100% with three players on single GPU (3p), and

reaching ≈100% with six players on two GPUs (6p2g). This sublin-

earity is even more evident for VRAM resource (Figure 7(c)-(d)),

i.e., it grows only ≈9% points with Capsule (≈22% in 1p vs. ≈31%
in 4p in Figure 7(c)) vs. ≈28% points with Baseline (≈25% in 1p vs.

≈53% in 3p in Figure 7(d)).

As Figure 7(e)-(h) show, additional players also have sublinear

CPU and RAM footprints with Capsule, as expected. For example,

Baseline uses ≈60% point additional CPU cycles (≈20% in 1p vs.

≈80% in 6p2g in Figure 7(f)) and ≈10% point additional RAM to go

from one player to six players (≈32% in 1p vs. ≈42% in 6p2g in Fig-

ure 7(h)). However, Capsule needs less than 11% (vs. Baseline≈60%)
point additional CPU cycles (≈18% in 1p vs. ≈29% in 8p2g in Fig-

ure 7(e)) and ≈4% (vs. Baseline≈10%) point additional RAM (32% in

1p vs. 35% in 8p2g in Figure 7(g)) to go from 1 player to 8 players.

Figure 8 shows the results onQuadGPU workstation.
2
The num-

ber of players hosted in Baseline and Capsule is similar as in the

DualGPU workstation, as workstations have comparable GPUs,

i.e., RTX 3090 and Fortis yield comparable performance in Exhibi-

tion application. QuadGPU workstation has four GPUs and has

a very powerful CPU. We allocate players across multiple GPUs.

Each GPU can accommodate up to four players with Capsule and

only three players with Baseline (with 30 FPS). Thus, as shown in

Figure 8(a), Capsule can host up to 16 players on four GPUs (16p4g)

before the system becomes GPU bottleneck.

As Figure 8(a)-(b) show, additional players consume sublinear

GPU resource with Capsule. For example, Baseline uses ≈65% point

additional GPU (≈30% in 1p vs. ≈95% in 6p2g in Figure 8(b)) to

go from one player to six players, while Capsule needs ≈67% (vs.

2
With Baseline, we should have been able to host up to 12 players on four GPUs, but we

show only up to six players in Figure 8. We actually were able host eight players. GPU

driver crashes with an unexpected error when launching the ninth players. We exclude

the third, partially utilized GPU, from Figure 8 to avoid inconsistency in averaging. As

explained earlier, we report average GPU utilizations for our multi-GPU workstations.

This assumes that all GPUs host equal number of players. This is not the case when

the third GPU hosts only two players (before GPU crash) while there are three players

on first and three players on second GPUs. Therefore, in Figure 8, we exclude (two

players on) GPU3 from our calculations and just average the utilizations for six players

(6p) on GPU1 and GPU2. We believe the conclusions we draw are still valid after GPU3

exclusion because our conclusions rely on cross-GPU averages. Even if GPU3 (and

further GPU4) did not crash, and we would still get three players on those GPUs,

Baseline accommodating one less player per GPU than Capsule, just like in GPU1 and

GPU2. Thus, our conclusions would still hold.
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Figure 8: System-wide utilizations with Capsule and Baseline onQuadGPU workstation.

Baseline≈65%) point additional GPU (≈30% in 1p vs. ≈97% in 16p4g

in Figure 8(a)) to go from one player to 16 players. Similar sublin-

earity holds in VRAM, CPU, and RAM resources:

• VRAM: Baseline uses ≈26% point additional VRAM (≈20%
in 1p vs. ≈46% in 6p2g in Figure 8(d)) to go from one player

to six players, while Capsule needs ≈2% (vs. Baseline≈26%)
point additional VRAM (≈20% in 1p vs. ≈22% in 16p4g in

Figure 8(c)) to go from one player to 16 players.

• CPU: Baseline uses ≈51% point additional CPU (≈8% in 1p

vs. ≈59% in 6p2g in Figure 8(f)) to go from one player to six

players, while Capsule needs ≈11% (vs. Baseline≈51%) point
additional CPU (≈8% in 1p vs. ≈19% in 16p4g in Figure 8(e))

to go from one player to 16 players.

• RAM: Baseline uses ≈6% point additional RAM (≈10% in 1p

vs. ≈16% in 6p2g in Figure 8(h)) to go from one player to six

players, while Capsule needs ≈2% (vs. Baseline≈6%) point
additional RAM (≈10% in 1p vs. ≈12% in 16p4g in Figure 8(g))

to go from one player to 16 players.

We also evaluated Capsule in multi-server setup by connecting

DualGPU and QuadGPU in a cluster. We were able to replicate

our results from Figure 7 and Figure 8, i.e., 8 players on the former

workstation and 16 players on the latter one. All 24 players were

connected to the same game server and they had smooth gameplay

with 30 FPS, as expected. Thus, we believe Capsule’s sublinearity

benefits will remain applicable to datacenters of larger scales.

6 Discussion

Capsule has some limitations, which can be further improved. For

example, transparency requirement (R1) has two aspects: func-
tional and performance. Functional aspect refers to the gameplay

experience, e.g., if two players are in the same game session and

are colocated on the same engine and the same GPU, one player

jumping should not interfere with the other player’s jump. This is

the essential part of the R1. Capsule and process-level-isolation,

which we used as the baseline, satisfy this requirement. There is

also performance aspect, e.g., one player exhaustively using GPU

resources by frequent jumps should not reduce FPS for the second

player. This is often called noisy-neighbour problem in cloud [No-

vaković et al. 2013]. Process-level-isolation does not satisfy this

requirement. Neither does Capsule, at least as implemented now.

Performance transparency, or performance isolation, in the cur-

rent Capsule implementation is achieved in an indirect way: player

rate-limiting after worst-case-analysis. When the game is deployed

in cloud, the game goes through offline performance profiling. The

profiler outputs the FPS range this specific GPU sustained during

an exhaustive gameplay, similar to code-coverage-based analysis

in software engineering [Grechanik et al. 2012]. We then do the

worst-case-analysis, i.e., derive the maximum number of players

this GPU can host in the worst case, which is when all players

perform graphics-heavy operations, concurrently. For example, if

profiler outputs FPS=[130-150] range after the offline analysis, and

the game developer requires at least 30 FPS for smooth gameplay,

we deploy at most 130/30≈4 players on this GPU. We repeat offline

profiling and analysis for each GPU flavor in the cloud. Some GPU

flavors might get disqualified altogether for this application if they

cannot offer the minimum developer-required FPS even for 1 player.

Although indirectly achieving performance transparency works,

in the future, we would like to explore way of achieving it directly.

In this exploration, our guiding principle would be maintaining

lightweightness (R3) because unless done with care, stronger per-

formance isolation mechanisms add non-trivial overhead, as com-

monly known as the virtualization tax [Keller et al. 2010].

Capsule also introduces player fate-sharing, which might de-

grade player fault-tolerance. For example, when a server GPU fails,

all players running on the game engine hosted on that GPU also

fail. Process-level-isolation also suffers this limitation. Fate-sharing
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is not about a player causing a GPU failure (or any system compo-

nent failure), but is about hardware failures themselves. Without

Capsule, there is only one player per game engine, one engine per

GPU, and the GPU failure impacts only that single player. However,

fate-sharing is an inherent problem, i.e., the moment we decide to

multiplex GPU resources across players we accept fate-sharing; just

like students share a bus ride everyday: a broken bus delays every-

one’s school arrival. Fate-sharing is also common and inevitable in

cloud: VMs, containers, lambdas all suffer it (Figure 2), e.g., when a

server fails, all VMs hosted on that server fail. The disadvantages of

the fate-sharing can be ameliorated by other mechanisms, such as

player migration with player state replication, as it has been done

for VMs over 20 years ago [Clark et al. 2005].

7 Related Work

The concept of accommodating multiple players on the same game

engine is already well established under the term Local Multi-
player [Karhulahti and Grabarczyk 2021]. Before online multiplayer

became prevalent, multiplayer games were mostly played offline

on the same console where the screen would be divided between

the players [Nintendo EAD 1992; Rare 1997]. Each player would

either have their own controller (connected to the same console)

or share a subset of keys on the same keyboard. Exclusive audio

or mouse control was seldom an option. While local multiplayer

games are still popular [Ghost Town Games and Team17 Digital

Ltd. 2020; Hazelight Studios 2021; Larian Studios 2023] and have

support in many modern game engines [Epic Games sent; Godot

Engine community and Godot Foundation sent; Unity Technolo-

gies sent], the majority of games only support multiplayer over

the network, which we call network multiplayer games. Network
multiplayer approach relaxes input devices sharing, display, and

other restrictions, such as supporting larger number of players.

However, a common limitation of all network multiplayer games is

the inability to reuse compute and memory across players, which

was possible with on-the-same-console approach.

With cloud gaming becoming viable in the last decade, many

platforms now provide remote servers to host games on the cloud

[Microsoft 2019; NVIDIA 2015; Sony Interactive Entertainment

2022]. To share powerful cloud server resources between multiple

players, cloud providers might virtualize and partition the hardware,

e.g., GPU and CPU, granting only a slice of these (virtual) resources

to each player [NVIDIA 2020, 2025]. The cross-player isolation

is often provided by running each game session on a separate

virtual machine (VM) [NVIDIA 2025a,b]. However, just like pre-

cloud networked multiplayer games, the VM-based approaches lack

cross-player compute and memory reuse ability.

Cross-player sharing concept is also used in the game servers [Lu

et al. 2006]. A game server manages many players at the same time,

but that server mostly coordinates cross-player state, e.g., synchro-

nize actions, inventories, and progress. Clients still render frames

by themselves, owning their hardware or using remote hardware.

On the other hand, Capsule strives to achieve the efficiency (R4) of

the on-the-same-console multiplayer games in the cloud environ-

ment, without imposing screen size, input, and other restrictions. In

fact, Capsule does so without compromising transparency (R1) and

compatibility R2, using a lightweight (R3) isolation mechanism.

8 Conclusion

We designed, implemented, and evaluated Capsule: an efficient

in-game-engine player isolation mechanism. Our implementation

in a popular open source game engine, O3DE, shows that Cap-

sule is application agnostic. We ported four existing applications to

Capsule-based O3DEwithout application changes. Our experiments

with these applications, three servers with different hardware spec-

ifications, including multi-GPU servers and multi-server cluster,

show that Capsule can increase datacenter resource–GPU, VRAM,

CPU, RAM–utilizations by accommodating up to 2.25x more play-

ers. This is the product of Capsule using up to 1.43x less GPU, 3.11x

less VRAM, 3.7x less CPU, and 3.87x less RAM compared to the

baseline. Capsule design can be adopted by other game engines to

increase datacenter utilization across cloud providers.
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