
Study on the File System Calls of Desktop
Applications

Nodir Kodirov, RJ Sumi
University of British Columbia

Abstract—The ways in which modern applications interact
with file systems are complex. Previous research shows that
modern software uses a myriad of calls to the file system (FS)
for operations that are simple in the abstract, such as saving
a text document. This is because files are more than just files;
many have complex internal structure, and often files are used as
a medium for complex, higher-level application behaviour. What
is expected of a modern application has changed a great deal
since the FS API has changed last. Thus, we have investigated
the text editing program gedit and the libraries it relies upon,
gtk and glibc. Using tracing tools to guide source inspection,
we build comprehension of the higher-level behaviours expressed
through multiple system calls that are currently present in gedit,
and based on these analyses identify recurring patterns that can
be simplified if better FS support were available. We discuss
potential modifications to the FS API that would better facilitate
the behaviour desired by programmers of today’s applications.

I. INTRODUCTION

A. Motivation

Efficient use of available resources is critical to the satisfac-
tory completion of any computing workload. The file system
(FS) is no exception to this rule; indeed, FS design, imple-
mentation and performance have been of concern to academics
and industry for a long time [2]. However, the vast literature
concerning itself with the measurement and improvement of
FSes is typically focused on industrial or academic contexts,
ignoring the usage of commodity file systems by software
targeting end users. Recently, this area has received some
attention, and it has been observed that modern software makes
many FS calls for conceptually simple tasks [2], performing
multiple reads and writes for simple workloads such as text
editing of a document.

For example, consider the case of writing a simple note
to yourself in your favourite text editing program. This note
might be only a few words, and will take you all of ten seconds
to write and save. One might assume that such a basic task
would correspond to a simple pattern of usage of your system’s
resources, but this is not the case. Table I shows the number
of the four most frequently used FS API calls made during
such a workload with a basic GUI text editor.

It is clearly visible that the usage of the FS API goes far
beyond what the simplicity of the workload in question would
suggest. This is because today’s files are more than just files.
Many of the files manipulated by modern end-user software
have complex internal structure, and, conversely, many files do
not represent complete entities by themselves, but are part of
implementing functionality spanning the use of multiple files.

What a modern end-user application is and does have
evolved a great deal since the FS API has changed last.

A consequence of this is that the complex file behaviours
required of modern applications are entirely the responsibility
of said applications and the libraries upon which they rely; they
receive little support from the simplistic FS API. Prior work
has not investigated what portion of the burden of complexity
is shouldered by the program logic itself, and what part is
shouldered by libraries. However, the haphazard usage of the
existing FS API suggests functionality desired by application
developers may not readily provided by the FS. whether or not
this is the case has not been examined, which is a principal
concern of this work. We wish to assess syscall bloat in
modern end-user applications, where syscall bloat refers to the
the generation of many syscall invocations at some point in
the application or library code. More specifically, we wish to
identify whether bloat is necessary to implement the behaviour
applications or libraries wish to express, and if so, whether its
necessity is due to limitations of the design of the file system.

By conducting experiments to identify the sources of
complicated FS API usage, we aim to address the question as
to what modern end-user applications want to use files for, and
thus shed light on how the file system might be able provide
applications and libraries with a better interface to suit these
goals. We believe this to be an important endeavour. Not only
does the expressiveness of the FS API directly influence the
clarity of the code that is written on top of it, but also its
ability to implement its intended behaviour in a performant
way. Given the amount of attention the optimization of file
systems has received historically, this is of some import.

B. Our Contributions

This work presents a number of contributions to the study
of the FS in the context of end-user applications. We enumerate
what our work offers as follows:

1) Logs - We provide a body of logs consisting of traces
taken from a typical modern end-user application’s
interaction with the FS API.

2) Analysis Scripts - We publish the Perl scripts we
use to aid our analysis. These scripts can generate

syscall Count
read 501
fstatat64 435
close 348
write 143

TABLE I: Number of calls



aggregate statistics about the logs, such as file access
counts, as well as facilitate more complicated tasks,
such as assembly and dissection of the call graph
expressed in a log.

3) Validation of Prior Results - Prior work [2] has
examined the FS API usage of applications in other
contexts. We observe similar results to this prior work
in a different environment, thereby generalizing their
results further.

4) Analysis of FS Usage - We analyze the usage of the
FS API as observed in the logs we produce, and
determine some points at which syscall bloat occurs.
We propose modifications to the FS API that would
allow for this bloat to be avoided.

Our logs and scripts are available at the project repository,
located on GitHub1. In this work, we chose gedit2 as our
representative of a modern end-user application, and examine
both its behaviour and its usage of the libraries upon which it
is built–namely gtk3, and glib4. Our logs are produced from
a fully open-source environment, meaning that unlike prior
work, we have produced an artifact that aids the comprehen-
sion of syscall bloat that is usable by any motivated party.

We produce logs by gathering traces of typical application
usage using DTrace5 to determine how gedit uses the FS API.
We parse these traces and use source code comprehension to
discover that gedit and the libraries it uses cannot provide the
functionality they want to without excessive usage of the FS,
and that simple tasks that tangentially involve actions such as
directory traversal can instigate large numbers of calls to the
FS API. We find some of these behaviours to be unnecessarily
expensive; the limited expressiveness of the FS API is at fault.
In these cases, we identify possible extensions to the FS API
that would enable applications and libraries to implement their
existing functionality with many fewer calls to the FS API.

While our work is motivated by and concerns itself ex-
clusively with the FS API, our methods of analysis and the
tools we publish that facilitate it are not domain-specific; we
use no special knowledge related to the FS to generate the
information from which we conduct our analysis. We believe
that our methods and tools can easily be applied to other
domains, such as networking, though we do not investigate
this possibility ourselves.

II. METHODOLOGY

In this work, we use gedit as a representative example of
a modern end-user application. While prior work [2] makes
observations across multiple applications, in our work to do so
is not necessary. This is because one of our principal aims is
to assign responsibility for syscall bloat to the portions of code
that comprise a running application, including both application
code and libraries. Since libraries remain the same across
the many applications that use them, a single application is
sufficient to gather the data we require to perform our analysis.
Additionally, in Section III we observe that gedit expresses

1http://www.github.com/knodir/proj_538b
2https://wiki.gnome.org/Apps/Gedit
3http://www.gtk.org/
4https://wiki.gnome.org/Projects/GLib
5http://dtrace.org/

similar aggregate FS usage to the programs examined in [2],
further justifying this decision.

To comprehend the file access behaviour of gedit, we
employ a three-stage process. First, we use DTrace while per-
forming a few simple file manipulation tasks, such as opening,
editing, saving, and closing documents. This generates a log
consisting of a trace for each FS API access from the syscall
layer up to the caller’s top-level function. We then process
these traces using Perl scripts to produce aggregate statistics
about the file access patterns, as well as graphs that show
subsets of the call graph encoded in the logs. Finally, we use
the edge weights on the graphs to identify probable sites of
call bloat and use the function names to guide source code
inspection.

Dynamic analysis is necessary for our work, because our
focus is to examine the actual usage of the FS API by
applications. Singly examining source code without logs would
not only be extremely difficult, it would also not allow us to
distinguish the portions of the code that do generate a bloat in
FS usage from those that could. Our use of DTrace allows us
to gather logs while avoiding any modification to the code we
are observing.

A. Data Collection

As described, the first step in our comprehension process
is to collect logs of gedit’s file usage. To do this, we use the
DTrace tool available on Solaris. This lets us interpose on
all the syscalls made by the application we attach DTrace to.
Additionally, we can use DTrace’s declarative D language to
specify for which types of syscalls we wish to record traces,
and for each trace what additional information we wish to
record as well.

In our data collection, we (for obvious reasons) traced
only syscalls triggered by gedit, and only those targeting the
FS API. Additionally, traces originating from process pipes,
network calls and DTrace’s own probes were all filtered
out. Thus, our log contains traces pertaining only to gedit’s
interaction with the file system. These traces inform us as to
the sequences of system calls being made by the program.

Since prior work [2] suggests that diverse workloads may
be necessary to capture a representative slice of application
behaviour, we take traces while executing three different tasks:

1) OneLineText: Open a new file, type “Hello World.”,
save the file as “hello world.txt”, close the file.

2) OnePageAutosave: Open a new file, save it as
“one page.txt”, write 400 words of text, save the file
again, close the file.

3) OnePageManual: As OnePageAutosave work-
load, except CTRL+S is pressed after every 4-5
sentences to simulate usual typing behaviour (about
14 times during the whole workload).

Both (2) and (3) take around 15 minutes to com-
plete. The reason to separate OnePageAutosave from
OnePageManual is that in the first we expect to exercise
gedit’s autosave feature, which is triggered every 30 seconds
by default, while in the latter we aim to simulate the frequent
saving behaviour of some users.



B. Identifying Access Patterns

Our observation of gedit’s file access patterns is driven by
log processing. We do two major types of log processing in
this work: generating aggregate statistics, and building subsets
of the call graph. All of our processing is done in Perl using
scripts available through the project’s GitHub repository.

Generating aggregate statistics is the simpler of our pro-
cessing methods by far. We generate histograms of the files
that are accessed in FS-related syscalls, of the syscalls that are
being invoked, and the most frequent pairs of top-level function
and syscall. These inform further investigation by suggesting to
us what syscalls we should be targeting in our graph building,
and what types of routines we should be looking for bloat in
(e.g. ones that interact with GUI elements if there are many
interactions with files ending with .png).

Since the full call graph generated from even the OneLine-
Text workload is large enough to prohibit easy comprehension,
we employ filtering techniques to target subsets of the call
graph for investigation. The first technique we use is restricting
the call graph subset to only contain functions that appear
in traces that access a particular function or set of functions
in the FS API, for example fstat calls. Second, since gedit
is a multi-threaded GUI application, our processing scripts
allow us to restrict the call graph subset to only contain
functions that appear in traces that originate from a specified
top-level function, for example the main function of gedit.
This allows us to differentiate between behaviour caused by
the window manager and that caused by gedit. Since the
previous two filtration techniques still produce graphs that are
too complex to easily understand, we employ a threshold-based
graph reduction scheme, wherein traces that contain functions
that are called less than a specified number of times are culled
from the log for the purposes of generating the graph. Since
removing a trace from the log alters the number of occurrences
of all the functions in the trace, and not just the one that caused
the trace to be removed, this culling is done iteratively until
convergence. We have found that with our data, a threshold of
five occurrences reduces the size and complexity of the graph
appreciably, while still maintaining rich information.

In addition to controlling the size of the call graph subset
under examination and the information it pertains to, we
attempt to model the execution that generated the log through
edge weights. Doing this exactly is not possible, since we do
not modify the application source, and DTrace gives us only
stack traces and file names at the time of a FS API call; it is not
possible to exactly determine at what depth into the stack two
consecutive identical traces have originated from. However, the
analysis we do provides a lower bound on where syscall bloat
may be originating, and we find that is practically a useful tool
in informing our investigation of the source code.

Our algorithm consists of maintaining a “stack state” for
each top-level function while stepping through the log. If a
trace contains a difference from the current stack state, all the
edge weights of between the function calls in the part of the
trace below the point of difference are incremented. If there
is no difference, the difference is assumed to take place at the
lowest level call. Making this stack state per-top-level function
means that the arbitrary interleaving of execution in the multi-
threaded gedit application does not affect our data processing

and thus does not affect our analysis. Additionally, since
the call graph may contain “diamond” patterns, which may
obscure which path through the graph generates the syscall-
rich executions, we also generate a second edge weight for
each edge, which is simply the number of times that function-
function pair appears in the log (after filtration). This lets us
identify if only one of the parent functions of a bloated function
is participating in bloated executions.

C. Identifying Simplifications

Our analysis of application and library source code in-
formed by our call graph subsets allows us to comprehend
the intended behaviour of code portions that lead to FS
syscall bloat. From the comprehension we derive from this
analysis, we generate simple descriptions of these higher level
behaviours. For example, if we determine that gtk is making
repeated calls to the FS API to observe all the members
of a given directory, this would suggest that the library is
performing a traversal of that directory. Our identification of
such descriptions of behaviours enables us to do our next
task, a proposal of a cleaner API. This phase of investigation
generates concise descriptions of application behaviour that is
not currently supported by the FS API. For example, “gedit’s
use of the gtk library causes it to make repeated stat calls to
the null device.”

The final stage of our work is to propose a cleaner FS
API that allows for applications and libraries to express the
same interactions that they already have with the FS more
concisely. Our identification of the problematic behaviours
of applications and libraries us to posit extensions to the
FS API that would allow applications and libraries to more
simply express their desired behaviour and with lesser syscall
usage. Again taking the example of directory traversal, we
could, in this case, propose that the FS API expose calls
that would support different incarnations of this. This might
take the form of proposing a call readdir(pathname),
which would cause the underlying FS to generate a copy of
the directory structure in userspace for the program to query
without crossings.

III. OBSERVATIONS

We started our experiment by looking for similar behavior
to that found in [2]. That work was done on Mac OS X,
with the HFS+ file system and Cocoa framework using the
iWork suite. Because we wanted to comprehend the application
and library source code to find the root causes of bloated
syscalls, we conducted our experiment on Solaris 11 with
open source libraries and gedit. Despite such differences in
the experimental framework, the observations we made that
were of the same type as those in [2] yielded similar results.
We found that gedit makes an enormous number of syscalls
to accomplish simple tasks. Figure 1 shows the amount of
FS API syscalls made by gedit for the three workloads
described in Section II. We observed hundreds of write(),
read(), fstat(), and close() calls being made. This
conforms with our previous study on Mac OS X environment
and the results of [2]. The power-law-esque syscall histogram
motivates us to focus our observations on the four most fre-
quent calls, write(), read(), fstat(), and close(),



 0

 100

 200

 300

 400

 500

 600

fdsync renameat munmap llseek mmap fstatat readlinkat mmapobj write close fstatat64 read

A
m

o
u

n
t 

o
f 

s
y
s
te

m
 c

a
lls

System call name

gEdit system call amount on three workloads

OneLineText

4 8 10

39 43
56 56

71

143

348

435

501

OnePageAutosave

6 12 10

39 43
56

86
71

144

355

450

502

OnePageManual

28

56

10

39 43
56

460

71

166

421

593

513

Fig. 1: Amount of system calls for three different workloads.

as identifying inefficient usage of those calls is likely to yield
the most impactful simplifications due to their number.

Generating the full call graph implicity contained in the
log proved to be a fruitless endeavour. It is too complex to aid
comprehension of the application and library behaviour. Even
after applying our reduction techniques discussed in Section
II, gives us a large graph. Figure 2 shows the call graph for
fstat()-realted traces rooted in the gedit main function,
containing only traces where every function appears at least
five times.

Fig. 3: Selected area of call graph for write()-related traces.

Figure 3 shows a small portion of the call graph
for write()-related traces. Sections like these are of
particular interest to us, because they suggest substantial
syscall bloat. Observe that the incoming edges’ counts
to libgtk-x11-2.0:write_all amount to only 2,
while the outgoing edge count is 138. We investigated the
write_all function and found that it calls write() in a
loop that does not terminate until the entirety of the specified

buffer is written successfully or failure is encountered. Since
the libc write() call is allowed to return before having
written all requested bytes in the presence of signals, this leads
to a large bloat. We discuss this situation further in Section IV.

Fig. 4: Selected area of call graph for open()-related traces.

Figure 4 shows a small portion of the call graph
for open()-related traces. This has a point of inter-
est similar to the graph pertaining to writes, in that it
shows an incoming-to-outdoing edge count ratio of 1 to
79 for _gtk_source_language_new_from_file().
While this seems to suggest it is this function that is the
cause of the syscall bloat observed here, it is actually showing
a limitation of our method. Our logs do not contain enough
information to create the unique execution that produced the
log, and so we show the lowest-possible point of bloat as
creating the bloat. However, source code inspection reveals
that this function cannot be creating syscall bloat. This means
that we must traverse the call graph upwards until we find the
cause of the bloat. This turns out to be quite easy in this case,
as the culprit here is ensure_languages(). The reason
ensure_languages() creates syscall bloat is because it
iterates over the files in a directory and appears to do some very
cursory processing. This appears to result in many fstat()
and open() calls and small read() calls.



Fig. 2: Call graph for fstat()-related traces.

IV. DISCUSSION AND FUTURE WORK

A. Potential improvements

The FS API and its implementations on the various systems
it is used in are products of extensive thought and engineering.
For very good reasons, the FS API has been kept fairly
simplistic. However, our observations show that, if we were
to specialize the FS API to better support the requirements
of end-user applications. We have identified a few examples
that could be included into the FS API that would increase its
expressiveness and potentially reduce the number of syscalls
programmers and libraries would need to invoke to create their
desired behaviour:

1) freaddireach(pathname, buffer,
count) - This modification is intended to
introduce the ability to fetch many small files from
an entire directory at once. This is motivated by the
directory traversal patterns we observed in the logs,
where each element of a directory was iteratively
queried, resulting in a large number of syscalls.
This call does not require the userspace code to
perform any fundamentally different functionality -
the inputs of the path of the directory in question
and the location of a buffer in which to record the
results of the operation are both required by the
existing fstat(), open(), and read() calls.
This would require the kernel to populate a larger
data structure than it already does, but not with
data that it does not already return through repeated
syscall usage. This syscall could drastically reduce
the call bloat associated with reading many small
files in a directory, as each file currently causes at
least four calls (fstat, open, read, and close).
This improvement would be especially effective
when using libraries such as glib, which introduces
a number of fstat() calls to /dev/null for

compatibility reasons.
2) write_waiting(fd, buffer, count) -

This modification is intended to reduce the number
of syscalls made when an application wishes to
write out the entire buffer that is normally specified
in a write() call. A call to write() is allowed
to return having only partially written the provided
buffer, but we observed in the gtk source code that
write() was used in a looping condition that only
terminated on completion of the whole write or
an error return value. The library programmer has
demonstrated clearly their willingness to wait for
the actual completion or unrecoverable failure of the
write() call, and so the FS API could be extended
to support this behaviour. Signals while in kernel
space are the likely cause of the frequent interrupting
of the write calls we observed, but modern kernels
are typically re-entrant, so the early-exit behaviour
should have no real impact on the kernel’s behaviour.

These examples are by no means exhaustive, and there is
no guarantee that they would benefit every program written on
top of them. However, they are motivated by our observations
that the libraries applications are built on top of are forced to
cause syscall bloat. In this, it is assured that, in the context of
gedit and gtk, these modifications would reduce the number of
FS-related syscalls made if integrated into the application and
library source. We leave it to future work to determine whether
this reduced number of kernel crossings would precipitate a
performance benefit.

B. Future Work

Due to time constraints, the scope of this project was
limited to analyzing a simple graphical text editor’s behaviour.
Collecting traces of the programs with larger code base and
more complex behaviour could further validate our claims of
the generality of our suggestions to improve libraries and the



FS API. While we believe our workloads are representative
of modern end-user document creation applications due to the
similarity of our aggregate syscall observations to those found
in [2], it would be useful to validate that our observations hold
for other classes of applications, such as browsers, or IDEs
such as Eclipse6.

In this project, we ran our experiments on Solaris 11
mainly because of its DTrace support, as the work inspiring
this project ([2]) was based on DTrace and we started by
replicating its results. This allowed us to quickly move into
the source code comprehension phase of our work, which was
main focus of this project. However, the use of Solaris is some-
what detrimental to our goal of investigating the behaviour
of applications and libraries in practice, as Solaris is not a
commonly used desktop operating system. Using a common
Linux distribution would be preferable to Solaris, but this
would require the effort of extending the existing rudimentary
support for DTrace currently available in Linux distributions,
or moving to another tool, such as strace, which is available
on Ubuntu. Our approach - reasoning about application and
library behaviour by collecting execution traces - is generic,
however, so aside from the additional work of building the
new tracing environment and generating new logs, much of
our methodology could be reapplied exactly. Experimenting
on other operating systems would also validate our claim that
the ubiquity of libraries allows us to generalize our suggestions
for FS API and library modifications.

Finally, to truly verify the utility of our suggestions for FS
API improvements in increasing expressiveness and decreasing
syscall bloat, we need to implement them and collect traces
with the same workloads we used here. We leave this as future
work.

V. RELATED WORK

We derived inspiration from [2] and started by replicating
their results in open source domain. The main difference
between this work and theirs is that we do not stop at reporting
observations of application FS usage. We extend this work
by looking at application and library source code to inspect
the root causes of proliferous file system calls. Moreover, [2]
suggests measuring desktop file system performance with a
number of different workloads, while we believe a sample set
of representative applications (such as text editors, graphics
rendering and web browsing) to suffice for measurement, since
many applications use the same generic libraries (such as gtk,
gdk and glibc). Because of the commonalities of libraries
between many applications, taking measurements from many
different applications are unlikely to observe wildly disparate
behaviour.

Our observations are to the results mentioned in [1], where
rename() and fsync() are repeatedly used by most text
editors to express the semantics of ordered persistent writes.
We agree with the analysis in [1] that suggests that the separa-
tion of fsync() into two separate primitives - osync() for
ordered writes, dsync() for durable writes - would eliminate
a fair number of syscalls and increase the expressiveness of
the FS API.

6https://www.eclipse.org/

Historically, the database community has had a keen inter-
est in the guarantees provided by file system and its perfor-
mance. One topic of recent discussion between PostgreSQL,
kernel and FS developers is about redesigning fsync() [4].
This discussion stems from databases’ reliance on a transac-
tional model, wherein each complete transaction is expected
to be persistently recorded to the disk in a well-defined order.
Since there is only one FS API call - fsync() - to guarantee
the persistence of writes, it is heavily used by database
developers. Although fsync() allows developers to achieve
both ordering and durability, it is typically computationally
expensive. Moreover, if another application is running along
the database and it is also makes frequent use of fsync(),
each transaction will take longer because has to wait for
previous fsync() calls’ returns. The database community
would prefers to have lighter weight, finer granularity sync
primitives, such as a non-blocking sync_file_range()
to allow database and application developers to flush only
content relevant to their application. This would allow parallel
execution of multiple syncing operations, reducing latency
overall for all applications. Another approach would be to have
dirty_background_bytes() call, which would expose
the amount of data not persistently written to the disk yet and
enable developers to issue calls to fsync() according to their
own policies, such as when a certain threshold of un-flushed
bytes is reached. These mechanisms allowing for more precise
control would mitigate the cost of ensuring data durability by
replacing frequent fsync() calls with more targeted ones.

There have been several measurement studies [6], [3],
[5] investigating FS usage and file access patterns in BSD,
Unix and Windows NT systems. In particular, our study
shares conclusions with [5] about the file access patterns of
applications. Most applications use memory-mapped interfaces
to read/write files and most accessed files are small, temporary
files. However, to the best of our knowledge, our work is
unique in trying to comprehend the FS operations end-to-end –
starting from the application source code through to the low-
level libraries used to interact with FS – and in identifying
potential causes of and solutions to bloated usage.

VI. CONCLUSION

We conducted experiments to explore the previously-
unexamined role of libraries in generating syscall bloat. Our
investigation led us to build a body of logs that provide
full stack traces for workloads representative of modern end-
user application usage, using gedit, a commonly used text
editor built on top of widely-distributed libraries. Our analysis
required us to develop scripts to aid the comprehension of
complex logs and call graphs, with methods that generalize
to other domains. Our experiments validated that prior work
extends to the wholly open-source environment we use, and
informed our suggestion of modifications to the FS API that
would allow for cleaner programming of applications and
reductions in the number of FS-related syscalls they make.

REFERENCES

[1] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,
pages 228–243, New York, NY, USA, 2013. ACM.



[2] T. Harter, C. Dragga, M. Vaughn, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. A file is not a file: understanding the i/o behaviour of apple
desktop applications. In ACM Transactions on Computer Systems 2012,
volume 30. ACM.

[3] J. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Kupfer, and
J. G. Thompson. A trace-driven analysis of the unix 4.2 bsd file system.
pages 15–24, 1985.

[4] H. Robert. Linux’s fsync() woes are getting some
attention, 2014. Available at http://rhaas.blogspot.ca/2014/03/
linuxs-fsync-woes-are-getting-some.html.

[5] D. Roselli and T. E. Anderson. A comparison of file system workloads.
In In Proceedings of the 2000 USENIX Annual Technical Conference,
pages 41–54. USENIX Association, 2000.

[6] W. Vogels. File system usage in windows nt 4.0. In Proceedings of the
Seventeenth ACM Symposium on Operating Systems Principles, SOSP
’99, pages 93–109, New York, NY, USA, 1999. ACM.


