
Virtual Middlebox Management for Cloud

Peter Feifan Chen and Nodir Kodirov
Class project final report for 538B: Distributed Systems, Computer Science, University of British Columbia

I. INTRODUCTION

Middleboxes perform a wide range of functions in a
network. Popular examples include load-balancing, NATing,
firewalling, caching, IPS, tunneling, redundancy elimination
and etc. [12]. The importance of middleboxes in enterprise
deployments was shown in [22], where it was found that
in a typical network the number of middleboxes rivaled the
number of L2/L3 switches. However, today, the deployment
of middleboxes within a network remains challenging. Works
such as [22] and [17] show that middlebox configuration errors
are extremely prevalent, that physical middlebox fail-overs
are ineffective and that middleboxes incur high capital and
operational expenses.

There are multitudes of reasons for this. First, the pro-
prietary and vendor-specific nature of middleboxes require
per-middlebox and per-vendor expertise and require network
administrators to manually reason about the middlebox’s place-
ment and the network forwarding rules on the middlebox
path. Second, middleboxes must always be overprovisioned to
handle a peak load. This leads to large inefficiencies in terms
of both capital and operating expenditure. These limitations
led to the virtualization of the hardware-based middleboxes.

Although virtualized middleboxes resolve some problems,
they remain challenging to deploy in large-scale cloud de-
ployments and must meet the needs of the endpoints they
serve. For example, VM-based endpoint servers are extremely
popular way of deploying cloud-services for performance and
availability, in a similar manner, middlebox deployments need
to converge with the endpoints they serve, i.e., middleboxes
need to be scalable and available as well (in the rest of the
work, we refer to virtual middleboxes as just middleboxes).

In order to overcome these issues, there has been a
calling for a unified control mechanism for middleboxes in
a similar manner to SDN controllers for L2/L3 switches.
Like SDN controllers, the unified control system will abstract
away the low-level configuration to more tractable high-level
declarations. Further, the unified control mechanism should be
able to react dynamically to a load change through scaling
or replicating middleboxes to meet both performance and
availability demands.

Unlike OpenFlow-based L2/L3 switches that can be con-
trolled with a centralized SDN controller [13], middleboxes
are usually proprietary, perform wide range of functions and
maintain shared state with varying data structures. Further,
middlebox functions inherently lack the end-to-end property,
which results in ambiguities regarding where the next hop is
when middleboxes are chained together. Finally, unlike Open-
Flow, which makes control decisions on a flow granularity,
some middlebox states need to be updated on a per-packet
basis, making the indirection to the centralized controller
costly.

These aspects of middleboxes make building a unified
controller for middlebox deployments tantalizingly difficult.
In this course project, we take a preliminary stab at this
complex problem of building a unified controller for middle-
boxes. Our goal is to design a solution for building scalable
middleboxes for cloud deployments. We designed our solution
for the increasingly popular container-based cloud setting and
leveraged abstractions provided by a container cluster manager
for middlebox management. We show that our implementation
has the following properties:

• our middleboxes are dynamically scalable

• our middleboxes’ shared states consistency is cus-
tomizable; one needs to trade it off with performance
depending on the consistency requirements of the state

• our solution can be generalized to many middleboxes
and their states

• our solution is deployable by cloud providers.

We will describe challenges associated with middlebox
management in general, and with container-based cloud de-
ployments in particular in the Section II. Our approach, system
implementation and evaluations are provided in Section III
and Section IV respectively. We discuss the generalizability
of our model in Section V and related work in Section VI.
Finally, we list interesting future work directions and conclude
in Section VII and Section VIII.

II. CHALLENGES

There are multiple challenges associated with middlebox
management. They can be divided into several categories,
such as configuration, placement and composition, scaling
and consolidation, and shared state management. Subsection
II-A describes each category in more detail. It will also
simultaneously describe the functionalities that the middlebox
controller is supposed to be able to handle. Then, we state
which of these challenges we are interested to handle in this
course project. Subsections II-B and etcd will describe how
these challenges apply to the container context. In particular,
we describe how Kubernetes’ abstractions can be leveraged to
address the issues we are interested in.

A. Development Challenges

Configuration, varies by middlebox and vendor type. The
purpose of a middlebox controller is to present a higher-level
abstraction where the network administrators specify only a
policy (e.g., ”drop all connections that exceed 100 KB/s in
throughput” for a firewall or ”send all traffic in a specific
subnet to be processed by an IDS, then by a WAN optimizer”).
The higher level policy is translated to low-level middlebox-
dependent configuration. This reduces operational expenses by

Fig. 1. Kubernetes master and minion nodes, and relationship between different modules of the cluster manager.

reducing the amount of specialized expertise required. The
challenge is the variety of middleboxes and their functions.

Placement and Composition, of middleboxes traditionally
requires careful and manual reasoning by the system ad-
ministrator in order to interpose on the network path. A
middlebox controller should be able to make the placement of
middleboxes in a topology-independent manner by re-writing
L2/L3 switch rules based on high-level policy. The challenge
here is the next-hop ambiguity caused by chaining middle-
boxes together, mangling of headers caused by middlebox
internals, limited TCAM space for the variety of rules arising
from middlebox combinations and optimal co-location of the
chained middleboxes.

Scaling and Consolidation, is not possible for physical
middleboxes. However, the rise of VM-based middlebox so-
lutions enables the capability to scale-in and scale-out the
number of middleboxes on demand. Also, different middle-
boxes can be consolidated on a single physical machine.
Consolidation could also potentially enable performance im-
provements by improving co-location and reuse for chained
middleboxes (e.g., decode lower layers only once for two
different application-level middleboxes). The middlebox con-
troller would dynamically scale middleboxes based on demand
and consolidate middleboxes based on its global view. The
challenges are overcoming proprietary nature of middleboxes
for consolidation and managing the shared state of middle-
boxes for scalability.

Shared state management, to improve the availability of
services, middleboxes failures needs to be handled by the
middlebox controller. This requires the controller to detect
failure and re-route flows to another middlebox replica that
is up-to-date with the last known state of the failed box. The
challenge is similar to scaling, where there needs to be a way
to manage shared middlebox states.

In this work, we are interested in handling scaling and

shared state management. We do not address configuration,
placement, composition and consolidation as these challenges
have more ties to other areas than Distributed Systems. For
example, middlebox configuration is more about developing
policy abstractions, perhaps with a domain specific language,
which points us in the programming languages domain [4].
Placement, composition and consolidation are optimization
problems[21]. Although these challenges are interesting on
their own, we focus on scalability and shared state, which are
more related to this course.

B. Kubernetes for middlebox management

We decided to work with middleboxes in a container
environment as containers are increasingly deployed in the data
center environment. To increase applicability, we designed our
solution in the context of Google’s Kubernetes cluster manager
[10], which is a widely used solution in large-scale clouds.

Kubernetes acts as an orchestrator for large-scale container
deployments. Figure 11 shows its system diagram where Ku-
bernetes is responsible for centrally creating, destroying and
interconnecting containers across multiple physical machines.

Kubernetes itself is composed of three powerful abstrac-
tions: pod, replication controller and services. Pod groups
related container together, and is the smallest computational
unit managed by Kubernetes. Replication controllers monitor
the number of pod replicas running on the system and ensure
that a given number of pods are always running. It creates (or
deletes) additional pods if some pods fail during runtime. Pods
are ephemeral in nature (created, relocated or deleted). In order
to deal with pods that come and go, Kubernetes uses services
abstraction which is a name-based discovery mechanism for
pods. In this way, locating where the pods are is abstracted

1Figure credit http://www.centurylinklabs.com/what-is-kubernetes-and-
how-to-use-it/

away from clients, who can access them directly via service
name. Figure 22 shows the relationship between the different
Kubernetes abstractions.

Fig. 2. Relationship between Kubernetes components. It shows relationship
of pods, replication controller, and services in Guestbook application. Here
frontend service, redis slave service, and redis master service are Kubernetes
services connecting frontend and redis-slave pods. Both of these pods are
managed by replication controller. redis-master is a independently running
pod not managed by any replication controller.

These abstractions not only make Kubernetes well-suited
for large-scale container management, but also allows us to
architect wide range of middleboxes, as we will describe in
more detail in Section III.

C. Etcd for shared state management

Kubernetes stores cluster management related meta-data
information and state in a distributed key-value store called
etcd [3]. Etcd exposes UNIX file system like structure for key-
value operations and provides a REST API to perform a set of
operations such as get, put, delete, test-and-set and watch. Puts
can have an attached time-to-live. Watch allows an application
to be informed of changes to a value via long-polling. Test-
and-set can be based on value or modified index.

Etcd uses Raft consensus algorithm to coordinate nodes.
It is designed to work with cluster sizes of between 3 to 9
nodes. Heartbeats are regularly sent out by a leader node to
all follower nodes to declare liveliness. A separate randomized
election time-out is kept by all follower nodes to detect leader
failures and begin re-election. Followers become leaders once
they receive a majority of votes. On each leader election, a

2Figure credit http://allthingsopen.com/

term number is monotonically increased to prevent multiple
leaders, although multiple leaders can still exist transiently.

All puts are strongly consistent as they are appended to the
Raft log (requires majority) and goes through the leader node.
Each write increments a modified index. This index provides
a means of versioning such that applications never miss an
update, e.g., applications can get a key of a specific index
value. Gets have three different consistency semantics: any,
consistent and quorum. An any read is eventually consistent,
but is fast, as it can read from any node. A consistent read must
read from the leader and therefore is strongly consistent only
from the viewpoint of operations of a particular node. Finally,
a quorum read is strongly consistent from the viewpoint for
all nodes, but is the most expensive, as it involves an extra
round-trip between the leader and all followers to ensure that
another leader was not elected before returning the read value.

The log entries in etcd are compacted periodically through
snapshots written to stable storage.

III. IMPLEMENTATION

This section describes the implementation and operational
details of our sample rate-limiting firewall middlebox. We will
discuss the issue of shared state, and the rationale behind using
etcd for shared state management. We will also describe the
environment we use for our experiments. Our source code and
all experimental data is accessible online [2]; forked repository
from original Kubernetes source base [10].

A. Sample middlebox

A middlebox is composed of two basic components: the
processing logic and the state. In our case, the processing logic
functions as a rate-limiting firewall. We run this firewall as an
application inside a container. The container is run inside of a
Kubernetes pod. This design allows us to support a wide range
of middleboxes such as DPI, transcoder, and IDS by changing
the application in the container.

Figure 3 shows overall design of our firewall. For simplic-
ity, we experimented with an echo client and echo server as
our endpoints.

The firewall has a per-source IP counter that is incremented
on every packet and reset to zero periodically. When the
number of packets sent by a particular source IP address rises
above a predefined threshold, all packets for that source IP
are dropped until the count is reset. For example, if we need
to rate-limit all connections to 100 packets per second, our
threshold value will be set to 100 and counter reset frequency
set to one second.

The shared state in our firewall is the threshold for dropping
packets. We push this threshold for dropping packets into
etcd (100 in the above example). When a new replica is
created, it splits this threshold evenly between all existing
replicas. This is done by the firewall application itself. When
a new firewall starts, it checks how many firewall instances
are already running, calculates the new even-split threshold
and updates all the firewalls’ threshold values in etcd. For
example, when a second firewall is created, it will check etcd
and become aware of the first firewall instance with threshold
equal to 100. The second firewall then assigns 50 to its own

threshold and also updates the first firewall instance’s threshold
to 50 in etcd. The first firewall instance learns of the new
threshold when it next performs a get operation on the value
in etcd. Our firewall supports performing a get operation to
check for new thresholds at a fixed frequency interval or on a
per-packet basis.

The reason for an equal split of the counter is that
Kubernetes’ service abstraction uses a round-robin scheduler,
which guarantees equal division of the flows between firewall
instances.

Fig. 3. Rate-limiting firewall system diagram. Dashed lines show echo request
packets flowing from client to server. Solid lines show response packets with
reverse direction.

The firewall uses Linux kernel’s netfilter and iptables to
enforce rate-limiting rules. Netfilter is used to capture inbound
packets by reading from an iptable queue that captures all Rx
traffic except those of etcd. Packet processing is performed by
Golang’s gopacket library [9]. We modify the source and desti-
nation IP addresses of the packet in order to redirect it between
an echo client and echo server. We keep track of mappings
between connection endpoints by using the unique source
port used by the Kubernetes service redirection. The reason
we have to modify the packet is because the Kubernetes’
service abstraction performs transport layer redirection by
opening two separate TCP connections. Because we are using
the service abstraction, the second TCP connection actually
has the firewall as destination rather than the echo-server.
By using Kubernetes service as a redirection mechanism and
modifying packet headers, our firewall is able to interpose on
the traffic between echo client and echo server (see Figure 4
for illustration of this interposition).

B. Shared state management

Pods are meant to be ephemeral in nature.Therefore placing
state in the middlebox would require the ability to migrate it
when new replicas are created or old ones destroyed. This is
currently impossible as replication controller does not expose
these events to the outside world. Therefore, we decided to
push shared state out of the middlebox to a shared distributed

store, etcd. We also considered a pod-local etcd. However, the
ephemeral nature of pods again made this impossible as etcd is
designed to operate with a quorum in order to support rejoins
of failed etcd nodes. Therefore, there has to be a quorum of
previously active pods. This condition is impossible to satisfy
and runs opposite to the semantics of scalability, so we opted
for pod-external etcd.

C. Experimental Set-up

Figure 4 illustrates general model of our set-up. Routing
between pod-based middleboxes and endpoint servers is ac-
complished through the service abstraction. As it is shown in
Figure 2, all pods in Kubernetes are assigned a label. All repli-
cas of the same pod have the same label. Kubernetes services
keep mapping of pods, their labels and IP address of these
labeled pods. One can address such pods by name through
Kubernetes services which then redirects the connection to a
random pod with that label. We use services to route traffic to
and from our middlebox pod.

Fig. 4. Firewall pods interpose on the connection between echo client and
server. Number of firewall instances are controlled by Kubernetes replication
controller and firewall instances periodically fetch new shared state from etcd.

In order to support dynamic scaling, we instrumented
Kubernetes with custom monitoring module. This module uses
statistics reported by the cAdvisor [8] to collect each middle-
box container’s CPU, RAM and network bandwidth usage.
Once usage crosses a predefined threshold, the monitoring
module creates an additional firewall instance by changing the
number of replicas maintained by the replication controller.
Although not illustrated in the Figure 1 this monitoring module
runs as one of the Master components (round boxes) and
interacts with the replication controller to change the number
of firewall replicas.

IV. EVALUATION

We carried out a number of measurements to evaluate
how well our system is able to address challenges described
in Section II. We were mainly interested in scalability and
shared state management of the middlebox controller. This
section measures that our firewall pods correctly enforce rate-
limiting policy when scaled, that we can scale middleboxes
dynamically based on a specified resource limitation and the
overhead imposed by pushing state out of the middlebox.

A. Correctness

We first verify if our firewall is correctly enforcing the
policy of limiting throughput to 100 packets per second
regardless of the number of firewall instances. We measure
the Rx rate at the echo server. We run the experiment with
one, two and four firewall instances as illustrated in Figure 5.

In this case, a single echo client sent increasing number of TCP
packets containing a single ḧelloẅord to the echo server (see
Figure 4 for packet flow). In all experiments, one ḧellom̈essage
counts as one packet. Figure 5 shows that the number of
packets client sends and server receives rises linearly until
the the threshold of close to 100 packets/second is reached,
at which point the threshold plateaus. This remained true with
two and four firewall instances, which confirms our firewall
is able to correctly enforce rate limiting policy when scaled.
Small jitter around 100 packets/second is due to our imperfect
packet counting method as we rely on perfectly synchronized
clocks on client and server nodes.

Fig. 5. Correct firewall functionality. Single echo server’s Rx is rate-limited
to 100 packets per second as expected.

B. Monitoring based Scaling

We also verify that our monitoring module is able to add
new firewall instances when a particular resource utilization
reaches a predefined threshold. As a threshold we decided to
use a RAM utilization of 60%, i.e., when a particular firewall
reaches this threshold, the monitoring module is expected
to create an additional instance while maintaining correct
rate-limiting policy. As previous subsection already confirmed
our firewalls’ ability to maintain correct rate-limiting when
multiple instances are run in parallel, this subsection will focus
on the threshold detection and firewall instantiation.

For this experiment we assign 70MB RAM to each firewall
pod. We start with only one pod. No load is generated during
the first 30 seconds, after which the echo client starts increas-
ing the packet rate. Figure 6 shows RAM utilization of each
middlebox over time as we increase the packet rate. It shows
the second firewall instance is created when RAM utilization
of the first firewall instance hits 60%. After a period of time,
the second firewall instance also reaches 60% threshold (8̃0
seconds after) which causes the third firewall instance to be
created and so on. Thus, we were able to confirm that our
monitoring module is able to dynamically scale middleboxes
in response to load.

Note that in this experiment our monitoring module
checked pod RAM utilization once per second. It is possible

Fig. 6. Dynamic scaling up of the firewall instances. Additional pods are
created when RAM utilization of any firewall container reaches predefined
60% threshold. Blue line (leftmost) represents RAM utilization of the first
firewall, red line (second left) represents the second firewall and etc.

to make monitoring finer at the expense of higher monitor-
ing overhead. However we believe one second interval was
reasonable for our experiments.

Although scaling up firewalls worked correctly, we were
not able to verify scale down feature of the monitoring module
due to limited statistics reporting support provided by the cAd-
visor in Kubernetes at the pod level [11]. In particular, another
problem with the scaling down experiment is that cAdvisor
does not report decreases in pod’s RAM utilization. This means
that the RAM utilization stays constant or goes higher, which
restricts us to scale up experiments only. However, this is not
a fundamental limitation of Kubernetes, but instead is only an
unsupported feature that will be rectified in future releases.
Once cAdvisor and Kubernetes can report correct statistics,
we should be able to run scaling down experiments without
additional effort.

Moreover, our monitoring module also supports CPU and
network bandwidth based scale up and scale down. These
features are also not fully functional due to limitation of Ku-
bernetes and cAdvisor. Once these limitations are eliminated,
our monitoring module should also support these metrics.

C. Shared-state Overhead

Middleboxes can trade off performance with consistency.
We are interested in empirically evaluating the different over-
head costs of our firewall with different consistency require-
ments for our setup. We measure the time required to process
each packet in the firewall. Figure 7 shows latency for four
different firewall implementations. In all the experiments, a
single echo client sends 10K packets at 1000 packets/second.
To measure the latency we take difference between time packet
is sent from the client and received by the server. Figure 7
shows min, max and mean processing time for 10K packets.

The first one is the base case where firewall does not
contain shared state and has an infinite threshold. Therefore,
we expect the base to experience the smallest latency. In our
case each packet has a latency of 0.3 ms on average.

Fig. 7. Etcd overhead on four different implementations of the firewall. Here
base is expected to impose the lowest latency and consistent is the highest.

Poll1000 and poll100 experiments update etcd state at
1000 ms and 100 ms intervals respectively. Both of these
implementations impose similar overheads as the base case.
We expected poll100 to impose more overhead compared to
poll1000, but this is not reflected in the figure. A possible
explanation is that the cost of polling is amortized over
hundreds of packets, even at 100 ms polling intervals, thus
the extra overhead incurred cannot be measured within the
precision of our timing mechanism. However, for the case of
a consistent firewall, where shared state in etcd is fetched for
each packet, we see that the latency is drastically higher (3x)
than the base case, as expected.

This experiment allowed us to evaluate the overhead push-
ing shared state out to etcd. For different type of middleboxes,
middlebox operator needs to carefully consider the trade off
between correctness and performance. For our case this trade-
off is determined by the guarantee that this middlebox is
expected to provide to the network.

V. DISCUSSION

We believe our solution generalizes to most middleboxes.
Kubernetes’ pod abstraction can be easily leveraged to wrap
most middlebox functionality while being managed by the
replication controller. Further, middlebox chains can be con-
structed via combining middlebox containers into a single pod.
This is similar to CoMb [21], with the policy enforcing shim
layer replaced by Kubernetes’ service abstraction. However,
unlike CoMb, the granularity at which middleboxes need to
be combined into pods (hyperapp in CoMb) can be changed,
which makes the networking orchestration more like [18],
where network configuration takes middleboxes into account.

Kubernetes service abstraction allows our pod-based mid-
dleboxes to be launched in a topology-independent manner
and gives us a means of interposing middleboxes on the traffic
flow path. This aspect of Kubernetes is interesting and unique
in terms of middlebox placement as the discovery mechanism
is achieved by name rather than re-writing router forwarding
table rules. As services are aware of new pods created or pods

destroyed by the replication controller, this provides a useful
substrate for composing and scaling middleboxes.

By pushing middlebox shared state out to etcd, we allow
our pod-based middleboxes to contain only local state and thus
capable of being scaled independently by the replication con-
troller, as Kubernetes originally intended pods to be. Separat-
ing out the shared state also gives the pod-based middleboxes
a configurable trade-off between consistency and performance.
We believe this model can fit any middlebox as it separates the
storage of state and processing logic - enabling the processing
logic of the middlebox to be scaled independently. Further
performance can be improved by trading correctness at a per-
state granularity.

Take the case of a redundancy eliminating (RE) middlebox.
RE fingerprints can be stored in etcd for comparison by any
of the RE replicas and retrieved for comparison for new flows.
For an application-level load-balancer, every new flow can be
used as a key whose value is the IP address of the end-point
server in order to provide affinity across the replicas.

Thus, we believe our solution is capable of supporting all
types of middleboxes and their functionalities.

VI. RELATED WORK

There has been much recent work in the area of virtualizing
middleboxes as network functions and defining methods for
managing them. We are not alone in envisioning a future of
centrally managed and dynamically scalable middleboxes that
are easily configured and upgradable, and cost less in both
capital and operational expenses. In [6] Gember et al. motivate
the need for a unified control plane for middlebox management
and outline the issues that make middlebox management
unique. It provides a general framework for potential solutions,
but does not go into any details.

APLOMB [22] studies the importance of middleboxes in
data center and proposes outsourcing middleboxes to the cloud.
We believe deploying middlebox-as-a-service is simply one of
the possible deployment scenarios that a middlebox controller
can support and therefore complementary to our work.

CoMb [21] advocates for consolidating middleboxes and
building them from re-usable modules. This provides both
performance and cost benefits as it allows controllers to exploit
multiplexing multiple middlebox applications on a single ma-
chine and chaining related packet-processing layers of different
middleboxes together. Management of CoMb boxes is done
through a network controller which constructs the hyperapp
(chained middlebox apps) and then maps them onto physical
machines with available resources. A policy enforcing shim
layer is placed on each machine for routing flows between
apps within the hyperapps. Provisioning is done by expressing
the desired properties of the logical middleboxes as an ILP
problem, optimizing for least maximum load or resource usage.
VMs and containers were mentioned as possible avenues
for deploying these hyperapps. Complementary to CoMb is
xOMB [1]. xOMB aims to open up middlebox architecture to
build more flexible, programmable and scalable middleboxes
on commodity servers. It provides a pipelined model where
middlebox functions are individual stages in the pipeline. It
abstracts away flow management (connection management,

socket I/O, data buffering) and provides RPC based arbitrary
message passing for state management between middleboxes
and a controller. Both of these works are complementary to our
Kubernetes pod-based middleboxes, as pods can chain multiple
middleboxes and Kubernetes’ scheduler can be extended to
make load-aware pod placement.

Other works such as Split/Merge [19] provide mechanisms
to migrate or merge state when middleboxes are scaled up
or down. An SDN based flow manager called FreeFlow
was used to re-direct traffic to the correct middlebox after
scaling. OpenNF [7] takes Split/Merge further by providing
a more generalized abstractions for state management. These
abstractions enable loss-free and in-order migration of packets
for flows that are still active, a known limitation of the
Split/Merge. However, neither dealt with non-partitionable
shared-state (state involving multiple flows), arguing that they
are rare and do not lie on the critical path for decision
making. However, redundancy eliminating middleboxes and
application-level load-balancers are obvious exceptions to this
argument. In this class project we also consider shared state
management by pulling state from the middlebox and use a
well-known distributed store etcd to maintain the state. Unlike
these two works, we don’t directly orchestrate the network as
Kubernetes’ service abstraction already supports flow redirec-
tion to newly created (or deleted) middlebox instances (pods
in our case).

Finally, placement and composition of middleboxes were
explored in [18]. It tagged each packet to eliminate ambiguity
on next-hop and tunnels to make TCAM space usage efficient.
Authors also built a controller for automatically translating
logical topology in the form of A→B→C into SDN rules,
making middlebox placement topology-independent. Further,
the placement and proportion of traffic handled by a middlebox
in the topology was expressed as an ILP problem that is opti-
mized for load and TCAM space. Again, this is complementary
to CoMb by eliminating the need for the policy enforcing shim
layer and allowing for finer grained middlebox multiplexing by
removing the need to deploy chained middleboxes as a single
hyperapp in a single VM or container. Stratos [5] pursued a
similar vein, but also included a resource controller for multi-
staged scaling and also expressed middlebox provisioning
as an ILP problem. Therefore, Stratos can be viewed as a
synthesis of multiple works mentioned above.

VII. FUTURE WORK

This course project can be extended to make middlebox
management practical in a container context. We describe
future works by dividing them into two categories: first one is
informed by the challenges we faced during project develop-
ment and the second one is informed by our taste of interesting
research. We describe each category in separate subsection.

A. Implementation Challenges

1) Kubernetes: Ideally, we will have our own Kubernetes
process dedicated to manage middlebox pods as a first-class
entities. This will enable bootstrapping of distributed data
store, perform dynamic scaling, monitoring and handle mid-
dlebox state. Further, the replication controller needs to be
instrumented with finer granularity control, such as which

middlebox to destroy and which physical machine newly
created middlebox should be placed on. Also, the service
abstraction is interesting in that it enables middleboxes to
be found by name. However, it is insufficient in its current
form as it imposes constraints on how middlebox can be
implemented (e.g., must be end-to-end) and is not scalable as
the number of chained middleboxes increases. Finally, services
should encapsulate packets for redirection rather than using a
TCP relay. This prevents all source IP addresses to be the same
regardless of the client IP address, which is clearly detrimental
to many middlebox functionality.

2) Distributed Store: Etcd has its shortcomings. It cannot
be used pod-locally for reasons mentioned in section III-B.
Also, etcd is not designed for large amount of data. For
example, redundancy eliminating middlebox’s fingerprints can
reach gigabytes which can not be handled well by etcd. In
future we should use distributed store without such limitations
or study what kind of middleboxes are well-suited for etcd.

3) Heterogeneity: Middleboxes do not necessarily have to
be container-based in order to be used in container deploy-
ments. They just need to fit within the abstractions provided
for container discovery used by the cluster manager (e.g.,
Kubernetes). The advantage for pod-based middleboxes is that
it is easier to co-locate with the endpoints as their management
converges at the cluster manager level. However, in future we
would like to explore VM-based middleboxes, such as ClickOS
for fast packet-level processing [15] and xOMB for flow-level
processing [1].

4) Monitoring and Management: The cAdvisor monitoring
system works on a container level, not a pod level. Further,
we did not touch upon resource allocation, centralized logical
configuration, placement, or routing optimization in this course
project. There is a large body of literature on collecting mon-
itoring information for wide range of management objectives
as we described in section VI. In future, we could also develop
middlebox-specific Kubernetes process to enable pod-based
middleboxes run their own specific controller which adds even
greater flexibility in managing state.

B. Potential Research Directions

First of all, previous works worked on a subset of mid-
dlebox management problems. However, unlike in the SDN
world[13], [14], there does not seem to be an unified middle-
box control plane that researchers can actually use to handle
resource allocation, centralized logical configuration, routing,
placement and state while at the same time provide availability,
scalability and fault-tolerance in the centralized controller
itself. It is possible that a recent open-source project called
OpenDaylight[16] seeks to fulfill this exact role. Nevertheless,
if that is the case, we can still study what OpenDaylight sup-
ports and what it is missing in order to extend OpenDaylight
to encompass more properties listed above.

We would like to explore advantages of pushing state out
of middlebox and reducing middlebox itself to simple decision
logic (processing pipeline). This was mentioned in [6], which
was dismissive of this idea, claiming that it would be restrictive
for middlebox innovation. However, to our knowledge, no
follow-up work pursued this path even though pushing state out
of the middlebox would lead to a whole new way of building

middleboxes and likely require industry support from the many
disparate vendors. Perhaps, we can even go a step further.
Similar to how independent network controllers can be built
on top of SDN controller NOX [13], maybe each middlebox
vendor can also supply a middlebox controller specific to
their middlebox that can run on top a NOX-like middlebox
central controller. The vendor can decide to push state out to a
distributed store or keep them internal to the middlebox. What
kind of abstractions the central middlebox controller provides
to vendor controllers and benefits of this model remains to
be explored. One difference that immediately jumps to mind
is that pushing state out enables us to manage middleboxes
at per-state granularity (e.g., different states in a middlebox
might require different consistency), while current methods
[19], [7] operate at flow granularity, despite the fact that they
are managing state and not flows.

Finally, a more theoretical line of work similar to [20]
can be explored. This work studies ways of performing SDN
rule updates such that no packet or flow sees two different
configurations of the entire network. It formalizes this into
a verification problem that can be checked with a model
checker. Benefits include allowing programmers to reason
about network properties from static configurations as packets
or flows will never see a transient one. One could explore how
such rule update can be applied to scenarios where a middlebox
configuration change is required when multiple middleboxes
are chained? Furthermore, what if this middlebox composition
changes flow headers or performs stateful processing? These
questions are important as chained middleboxes might require
no flows to ever see a transient set of middlebox configura-
tions.

VIII. CONCLUSION

In this course project we studied challenges of middlebox
management in a container context. In particular, we designed,
implemented and evaluated system which leverages container
cluster manager (Kubernetes) to address scalability and shared
state management of the middleboxes. We developed mon-
itoring module to keep track of middlebox resource usage
and spawn additional middleboxes when predefined threshold
usage is reached. This module leverages Kubernetes’ replica-
tion controller abstraction to achieve dynamic scaling. We also
experimented with middlebox shared state by pushing it to etcd
and observed consistency and performance trade-offs.

In general, Kubernetes is well-suited for middlebox man-
agement as it provides essential abstractions for middlebox
management. We reported some limitation of the Kubernetes’
current implementation and how it can be extended to support
more flexible middlebox management.

REFERENCES

[1] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat. xomb:
Extensible open middleboxes with commodity servers. In Proceedings
of the Eighth ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’12, pages 49–60, New York, NY,
USA, 2012. ACM.

[2] P. F. Chen and N. Kodirov. Course project source code. https://github.
com/knodir/kubernetes/tree/master/VMC. [Online; accessed April-23-
2015].

[3] CoreOS. coreos/etcd. https://github.com/coreos/etcd. [Online; accessed
April-18-2015].

[4] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language. In
Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 279–291, New York, NY,
USA, 2011. ACM.

[5] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar. Stratos: A network-aware orches-
tration layer for middleboxes in the cloud. Technical report, Technical
Report, 2013.

[6] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward software-
defined middlebox networking. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, HotNets-XI, pages 7–12, New
York, NY, USA, 2012. ACM.

[7] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. Opennf: Enabling innovation in network function
control. In Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 163–174, New York, NY, USA, 2014. ACM.

[8] Google. google/cadvisor. https://github.com/google/cadvisor. [Online;
accessed April-18-2015].

[9] Google. Packet library for golang. https://godoc.org/code.google.com/
p/gopacket. [Online; accessed April-21-2015].

[10] GoogleCloudPlatform. Container cluster manager. https://github.com/
googlecloudplatform/kubernetes. [Online; accessed April-21-2015].

[11] GoogleCloudPlatform. Kubernetes’ current limitation on resource
monitoring. https://github.com/GoogleCloudPlatform/kubernetes/blob/
master/docs/resources.md. [Online; accessed April-21-2015].

[12] I. N. W. Group. Rfc3234 - middleboxes: Taxonomy and issues. https:
//www.ietf.org/rfc/rfc3234.txt. [Online; accessed April-18-2015].

[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. Nox: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, July 2008.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al. Onix: A distributed
control platform for large-scale production networks. In OSDI, vol-
ume 10, pages 1–6, 2010.

[15] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici. Clickos and the art of network function virtualization.
In 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 459–473, Seattle, WA, Apr. 2014. USENIX
Association.

[16] OpenDaylight. Opendaylight. http://www.opendaylight.org/. [Online;
accessed April-21-2015].

[17] R. Potharaju and N. Jain. Demystifying the dark side of the middle:
A field study of middlebox failures in datacenters. In Proceedings of
the 2013 Conference on Internet Measurement Conference, IMC ’13,
pages 9–22, New York, NY, USA, 2013. ACM.

[18] Z. Qazi, C.-C. Tu, R. Miao, L. Chiang, V. Sekar, and M. Yu. Practical
and incremental convergence between sdn and middleboxes. Open
Network Summit, Santa Clara, CA, 2013.

[19] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/merge:
System support for elastic execution in virtual middleboxes. In Pre-
sented as part of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 227–240, Lombard, IL,
2013. USENIX.

[20] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’12, pages
323–334, New York, NY, USA, 2012. ACM.

[21] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 323–336, San Jose, CA, 2012.
USENIX.

[22] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’12, pages 13–
24, New York, NY, USA, 2012. ACM.

