
Constraint-based Data Center Resource Allocation

Nodir Kodirov
Computer Science department, University of British Columbia

Abstract—Cloud providers should be able to quickly and
efficiently map customers virtual network requests to their
physical infrastructure. Doing so quickly improves responsiveness
of the provider - ability to start service faster, and doing so
correctly makes efficient use of provider resources, giving higher
return on investment. This work explores the use of Satisfiability
Modulo Theories (SMT) solvers to solve the resource allocation
problem. The SMT-based solution guarantees correctness, and
SMT solver with special characteristics, such as monotonicity,
can be used to further improve solver performance. In this
project, we implement the constraint-based resource allocation
algorithm using a general-purpose SMT solver, Z3, and then
explore opportunity to use a special featured SMT solver, SAT
Modulo Monotonic Theories, to compute the solution in even
shorter time. Such performance improvements bring us one step
closer to deploy SMT-solver to real data center environment,
where quick allocation of physical resources is highly desired to
reduce service provisioning delay.

I. INTRODUCTION

Today, most of internet services rely on Infrastructure-
as-a-Service providers to host their compute resources. Ser-
vice providers request the virtual network which has to be
mapped to the physical infrastructure of the cloud provider.
Virtual networks consist of several (sometimes hundreds to
thousands) virtual machines and connection between them.
Cloud provider’s task is to quickly and efficiently map the
requested virtual network to the provider’s physical network.

This work explores opportunities of using SMT solvers
to efficiently allocate data center resources. Recent work [8]
shows feasability of using SMT solver for resource allocation
with bandwidth guarantees. In that work, resource allocaion is
driven by introducing contraints, which mandate requirements
to be satisfied for the mapping to be correct. Set of constraints
are fed into SMT solver, Z3 [4]. Z3 does complete solution
space exploration to find virtual machine (VM) to server
assignment satisfying all mandated constraints. Output of the
Z3 can be directly used to deploy virtual network to the
physical infrastructure of the cloud provider. Z3’s failure to
find satisfying solution guarantees infeasibility of resource
allocation for given virtual network.

The next section discusses the scope of this work, followed
by a description of each constraint given to the SMT-solver. We
conclude by discussing results, limitations, and future work.

II. SCOPE

Initial scope of this project was to compare performance
of two SMT solvers. Previous work [8] used Z3, a publicly
available, general-purpose SMT solver, and reported its per-
formance. In that work it took around 200 seconds to map
virtual network consisting of 15 VMs to physical network of
200 servers. This runtime was further reduced to 2 seconds

by introducing abstraction and refinement to Z3 constraints.
In this project we intend to solve the allocation problem using
SAT Modulo Monotonic Theories (SMMT) [1], another SMT
solver with specific characteristics to solve the allocation prob-
lem faster. Because SMMT is able to reason about graph edges,
it can guarantee adjacency of the physical links allocated to a
virtual link. Therefore, SMMT is expected to solve mapping
problem within shorter time.

However, due to time constraints, only the first stage
of the initial scope was achieved. Original paper [8] we
planned to reimplement to experience with SMT solver was
(largely) reproduces. This work is referred as an original paper
hereafter. We also got an intuition to which of original paper’s
constraints could be solved faster by SMMT.

III. IMPLEMENTATION

This chapter describes constraints fed to the SMT solver to
map virtual network (V N ) to physical network (PN ). Since
all of these constraints were actually designed and explained
by authors of the original paper, we only provide intuiton
behind each constraint in the context of our sample allocation
as in figure 1. Interested readers can refer to [8] for a formal
and complete description, which also includes abstraction and
refinement of these constraints, too.

Fig. 1: Virtual network to physical network mapping.

Figure 1 shows a sample V N to PN mapping, where V N
consisting of three VMs: vm1, vm2, vm3 (v ∈ V ) is deployed
to PN with seven servers (s ∈ A) and two switches (sw1,
sw2 ∈ B). Here, physical network of the cloud provider is
encoded as PN = (A∪B,L), where A is set of servers, B is
set of network nodes (L2 switches), and L is set of physical
links that connect servers/switches with other switches. Virtual
network V N = (V,E) consists of the set of virtual machines
v ∈ V , and virtual links e ∈ E between them. In figure 1,
there are two virtual links, vm1 to vm2, and vm2 to vm3.

The first constraint ensures each virtual machine v is
mapped to the server s, and it is mapped only once. In this
case X(v, s) is integer variable equal to 1 if virtual machine
v is assigned to server s, 0 otherwise.



αs :
∧
v∈V

(∑
X(v, s) = 1

)
.

Virtual links are laid over two or more physical links, i.e.,
each virtual link can include multiple physical links. Each such
hop of the virtual link is indexes with k, and only one physical
link can be k-th hop of the virtual link e. Following constraint
encodes this requirement. R(l, e, k) is assigned integer value
1 if physical link l is k-th hop of the virtual link e. Note
that 0 ≤ k ≤ kmax, where kmax is the maximum possible
length of adjacent physical links (excluding loops). In figure
1 kmax = 3.

αr :
∧
e,k

(∑
l∈L

R(l, e, k) ≤ 1

)
.

If virtual link has more than one hop, we should ensure
two consequent hops are actually made of adjacent physical
links. The third constraint below encodes this requirement.

αc :
∧
e,k

 ∨
l1,l2:l1,l2 are adjacent

R(l1, e, k) ∧R(l2, e, k + 1)

 .

Now we introduce an integer variable to represent physical
bandwidth allocated to virtual link. If physical link l lies on
k-th hop of the virtual link e, Y (l, e) is assigned value equal
to bandwidth of the virtual link r(e), 0 otherwise. Following
constraint encodes such requirement. For example in figure
1 all three hops – s2 to sw1, sw1 to sw2, and sw2 to s6 –
of the virtual link vm2 to vm3 get assigned value equal to
this virtual link’s bandwidth, i.e., Y (l1,2,3, vm1 to vm2) =
r(vm1 to vm2).

αy : Y (l, e) = r(e)⇔
∨
k

R(l, e, k) = 1.

For each virtual link, we need to make sure two host
servers VMs get mapped to are physically connected. The next
constraint encodes this requirement using previously defined
variables X(v, s) and Y (l, e). Note that although Y (l, e) in
current formula represents physical links directly connected to
the host servers, when combined with αy and αc constraints
this representation extends to all hops between two servers.

αv :
∧

(v1,v2)∈E,
s1,s2∈A,s1 6=s2

((X(v1, s1) = 1 ∧X(v2, s2) = 1)→

∨
l1:s1∈l1
l2:s2∈l2

(Y (l1, e) = r(e) ∧ Y (l2, e) = r(e))).

We need two more formulas to encode compute and link
capacity of the servers. βserver ensures sum of VMs’ compute
resources mapped to a particular server does not exceed
capacity of that server.

βserver :
∧
s∈A

(∑
v

X(v, s) ≤ c(s)

)
.

βlink encodes link capacity of the server, i.e., sum of virtual
links’ bandwidth passing through a particular physical link
must not exceed actual bandwidth b(l) of that physical link. For
example, for a mapping shown in figure 1, where both virtual
links are allocated as an overlay to physical link sw1 to s2,
following requirement b(vm1 to vm2) + b(vm2 to vm3) ≤
b(sw1 to s2) has to be satisfied.

βlink :
∧
l∈E

(∑
e

Y (l, e) ≤ b(l)

)
.

Combinning all constraints together, we get VN allocation
problem represented as an input to the SMT solver.

ΦPN,V N = αs ∧ αr ∧ αc ∧ αy ∧ αv ∧ βserver ∧ βlink

Output of the SMT solver is value assigned to X,Y,R
variables, from which VM to server mapping, and virtual link
overlays can be easily derived. Z3 outputs ünsatẅhen it is
not possible to map given virtual network to the physical
network. Because Z3 does complete solution space exploration,
correctness is guaranteed, i.e., ünsatc̈onfirms infeasibility of
the allocation (for example if capacity required by the V N
exceeds actual capacity of the PN ).

IV. RESULTS, LIMITATIONS AND FUTURE WORK

Our effort to replicate the original paper was largely
successfull. Our current implementation maps virtual networks
consisting of 3 VMs to physical networks consisting of seven
servers and two switches within 300 milli-seconds. Although
current implementation is able to handle simple topologies as
shown in 1, it fails to provide correct virtual network overlays
for more complex topologies. For example in figure 1, if all 3
VMs are mapped under the same switch, 2 VMs into the same
server and one to different server, produced solution contains
redundant hops. We believe this is due to a minor bug in our
constraint encodings.

We plan to extend this work beyond class project. Immidi-
ate future work is to fix aforementioned bug so that it would
be possible handle all topologies. Source code with continuous
update is available at Github project repository [2]. We also
made a frozen release for the scope of this class project (which
can no longer be modified) accessible at [3]. This report is
based on latter source code.

Longer term future work consists of implementing abstrac-
tion and refinement introduced in the original paper, and com-
paring performance of Z3-based solution against SMMT-based
one. Comparison could be further extended to heuristics, and
Integer Linear Programming based solutions. These compar-
isons are indeed very useful since most of the papers published
in major conferences use heuristics and ILP-based solutions
[5], [6], [7]. SMT-based solutions are superior to heuristics-
based conterparts not only because SMT-based approach is
guaranteed to terminate, but it also guarantees correctness, i.e.,
solution which honours all mandated constraints [8].



Although we did not implement SMMT-based solution and
have no empirical evaluation, yet, we expect it to be faster
than Z3-based one. This improvement is the result of SMMT’s
ability to reason about adjacency of connected physical links.
This means in SMMT implementation constraint αc, which
ensures consequent physical hops assigned to virtual link to
be adjacent, can be solved much quickly. We intend to explore
this in future work, too.

V. ACKNOWLEDGEMENT

I am grateful to Sam Bayless, who introduced me SMMT
solver and mentioned its applicability to solve data center
resource allocation problem. Sam also shared his expertise on
encoding Z3 constraints, saving me from spending hours on
Z3 tutorial, and helped to debug my code when I got really
stuck. I am also thankful to Microsoft Research for making
Z3 publicly available.

This project has been mostly educational for myself, to get
a hands-on experience with SMT sovers. Two other contribu-
tions are an open source implementation [2] of the original
paper [8], and attempt to use SMMT to improve performance.
All resource allocation constraints mentioned in chapter III are
contribution of the original paper authors [8].

REFERENCES

[1] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. Sat modulo monotonic
theories. In Work in progress, Dec. 2014.

[2] N. Kodirov. Continuously updated github source code repository. https:
//github.com/knodir/mapper. [Online; accessed 24-Dec-2014].

[3] N. Kodirov. Frozen code for the class project. https://github.com/knodir/
mapper/releases/tag/v1.0. [Online; accessed 24-Dec-2014].

[4] M. Research. Z3: Smt solver. http://z3.codeplex.com/. [Online; accessed
19-Dec-2014].

[5] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes.
Omega: Flexible, scalable schedulers for large compute clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 351–364, New York, NY, USA, 2013. ACM.

[6] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 323–336, San Jose, CA, 2012.
USENIX.

[7] A. Tumanov, T. Zhu, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger. TetriSched: Space-time scheduling for heterogeneous datacen-
ters. Technical Report CMU-PDL-13-112, Carnegie Mellon University,
Dec 2013.

[8] Y. Yuan, A. Wang, R. Alur, and B. T. Loo. On the feasibility of
automation for bandwidth allocation problems in data centers. In
FMCAD’13, pages 42–45, 2013.


