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ABSTRACT

Enhancing eCos with EDF Scheduling and

Lock-Free Buffer

Nodir Kodirov

Department of Computer, Information & Communication Engineering

Graduate School of Konkuk University

In this work, we address two issues at embedded system. They are

thread scheduling algorithm and lock-free thread message

communication mechanism at RTOS (Real-Time Operating System)

kernel. Both of them have a direct relationship with system efficiency

and an indirect relationship with stability through timeliness. We

illustrate the need for and suitability of EDF (Earliest Deadline First)

scheduling algorithm at prototype application. Our prototype application

is designed based on computational characteristics of embedded

application, carrying Real-Time computing of Small Unmanned

Helicopter’s OFP (Operational Flight Program). OFP runs on eCos

(Embedded Configurable OS) RTOS on x86 architecture based board.

Also, we show suitability of our lock-free message communication

mechanism for our prototype application. Implementation approach for

both solutions will be explained fully, accompanying with source code

skeletons. We demonstrate our enhanced kernel performance based on

less context switch needed, higher CPU utilization allowance and finer

timeliness qualities via various scenarios of producer-consumer

applications, where prototype application is made of one of them.

Keyword : Real-time scheduling, EDF, eCos, feasibility, operational flight software, UAV
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Chapter Ⅰ. INTRODUCTION

Current technology trend is leading towards embedded computing.

Most of our daily appliances, portable devices, industrial and automotive

tools are armed with embedded systems. All of them are targeted to do

a particular job. However, what they share is to produce a presumed

output by given time and quality. Generally, we understand these criteria

as being an efficient. Computing efficiency is pivotal for all systems and

embedded systems are not exception. Efficiency of the system is a

general term and there is a number of ways to achieve it. In this work

we approach it from two grounds, where both have a direct relationship

with an efficiency and an indirect relationship with stability through

timeliness of the system. The first is to enhance system scheduling

algorithm and the other is to provide lock-free thread message

communication mechanism.

As an experimental application, we have a prototype of the OFP

(Operational Flight Program) carrying Real-Time computing of Small

Unmanned Helicopter. Our both prototype and real embedded application

runs on top of the eCos (Embedded Configurable Operating System)

Real-Time Operating System (RTOS) for x86 architecture based

embedded board.

The first ground where we aim to have a higher OFP performance is

to add EDF (Earliest Deadline First) scheduling algorithm to the eCos

kernel. EDF (also known as Least Time to Go) is deadline based

dynamic scheduling algorithm used in real-time OSs. Motive to

implement EDF to our system based on the similarity between OFP's

computational and EDF scheduling characteristics. Also, theoretical

framework congested during the last four decades on real-time

scheduling algorithms show EDF to be one of the best scheduling
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policies for timely critical embedded applications. Based on these

arguments we expect EDF to perform better than its alternatives,

especially with given periodical nature of the OFP.

The second point we are going to hook the kernel is thread message

communication domain. Once again, need to make this addition came

from our practical application - OFP. It consist of the six threads to

read and write data, and to execute control logic. In this scenario, one

group of the threads plays role of the producer and others are consumer.

Generally, several concurrent communication primitives, such as

message-boxes, mutex or semaphores can be used to provide thread

communication. However, problem with them is on their lock-based

approach for the shared resource management. Instead, we are going to

use Non-Blocking Buffer (NBB) to achieve the same. NBB is lock-free

thread message communication mechanism. In each state NBB allows

designer flexible retry-strategy that better suits real-time application

characteristics under development. NBB can have one of several states,

when buffer is full, consumer is in the middle of the reading, buffer is

empty or producer is inserting. In all above cases, NBB designer is free

to choose his/her own solution based on NBB status at the particular

time. Once we provide lock-free thread communication mechanism for

our OFP, we will have less scheduler locks; thus having more room for

other the urgent computation to be executed earlier. In this way, we will

have indirectly positive impact on timeliness of the OFP and our kernel

in a whole.

Although we don't illustrate direct implementation and experimental

results for our real OFP, we built our prototype application sharing most

of the characteristics and computational nature to be as it is in real OFP.

Thus, implementation and experimental results illustrated for our

prototype application will confirm kernel enhancements to be true for our

real OFP as well..
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Rest of the work organized as follows. First, we will provide problem

definition, explaining more about computational characteristics of UAV

OFP, where our implementation is targeted to be utilized. Here, we will

state the reason why we have followed this approach to make an

improvements and what do we expect from our eCos-EDF and

eCos-NBB implementations. Next, we will stop on related works

addressed similar issues on real-time embedded systems. Before moving

to the explanation of our approach and solution in detail, we will briefly

explore eCos itself, its kernel and schedulers. This serves as a base for

the all other coming sections. eCos-EDF and eCos-NBB implementation

details will be fully illustrated, providing source code excerpts in the

critical points. Also, we will introduce scheduling feasibility test support

we have integrated into the eCos kernel space. In the penultimate section,

we will demonstrate performance improvements introduced by both of

our solutions. Lastly, we will conclude our work summarizing key points

and stating future works.
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Chapter Ⅱ. Problem definition

Ultimately, our solution is targetted to be applied to the flight control

program of the small UAV, used on disaster response and recovery

phase of disaster management system [15]. UAV is supposed to reach

remote and/or hazardous places to take a moving and still pictures of the

hot spot location, together with capability of having up to 20 kg payload

(which could be first aid box). In order to get clear definition of the

problem, we need to know computational characteristics of our OFP,

which will be used to build prototype application. In the first sub-section

of this chapter we will provide brief introduction to our OFP,

emphasizing on its computational characteristics, threads and their

responsibility. Based on introduced OFP characteristics, we will state the

reasons why we selected EDF and NBB to be proper solution to

provide better timeliness and performance for our OFP and eCos in a

whole.

2.1 OFP characteristics

Operational Flight Program is a piece of software written in C

programming language. It is used as a flight control program of the

small Unmanned Aerial Vehicle (UAV). OFP consist of the six threads

for reading and writing data and control logic.
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<Figure 2-1> OFP thread interaction

The first thread interacting with Helicopter is Control logic thread,

marked as the Do_Guid_Cntrl (Guidance and Control thread) in the
Figure <2-1>. It is OFP’s core thread running on 50Hz frequency. Its

task is to calculate control signal based on input sensor data and control

algorithm, and send them to the UAV’s Ctrl (Control) module. The
second one is Do_Ser_Monitor (Serial monitor thread) for polling

asynchronous I/O ports. The other four threads are to read sensor data

and store it into the global storage. These four reader threads manage

Control Signal, Navigation, GPS, and Command message respectively.

The Current_Ctrl_Reader (Control reader thread) thread receives

control signal which is fed back from OFP. The Current_AHRS_Reader
(Attitude Heading Reference System reader) thread is to receive AHRS 
sensor data sent on 100Hz frequency. Received data include current angle

(roll, pitch, yaw), three-axis acceleration and angular velocity. Reading

data from Sens_AHRS_Pack, Current_AHRS_Reader analyzes and

stores into the Global data (Glob_AHRS_Sens). The Current_GPS_ 
Reader (GPS reader) thread’s role is to receive GPS sensor data sent on
10Hz frequency and save it into the Global data (Glob_AHRS_Sens).
Current_GPS_Reader received data includes location values
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(longitudinal, latitudinal and altitudinal), and velocity of three-axis.

Finally, Current_Asyn_Reader (Asynchronous Data Reader thread)

receives command data including waypoint, operational mode and UAV

information, which are sent from Ground Control System (GCS). All
received data by Current_Asyn_Reader are saved into the Global

storage. Global data storage content will be used to calculate control

signal for proper navigation and stability of the UAV.

2.2 Suitability for timeliness and performance

As it is mentioned above, we were targeting to have higher system

performance and CPU utilization allowance to meet timeliness of our OFP

and to meet future development needs. We came up with two ways to

achieve our purpose. Both of ways roots to the appropriate features of

our practical application - UAV OFP. Our first approach to enhance OFP

performance is to add EDF scheduling algorithm to the eCos kernel. EDF

is deadline based dynamic scheduling algorithm used in real-time OSs.

Motive to implement EDF to our system is based on the similarity

between OFP’s computational and EDF scheduling characteristics. Our

OFP consists of six threads, executing by the given period to read

sensor data and output control commands. EDF is believed to be an

optimal scheduling policy in preemptive uni-processor system with a set

of threads executed by their deadlines [11]. Also, EDF scheduling upon

uniform multiprocessors is robust with respect to both job execution

requirements and processor computing capacity [6].

We expect deadline based common characteristics shared by both OFP

and EDF, which is parallel execution relationship amongst sensor data

read threads and their periodical execution to be a suitable match. This

two features are expected to provide high performance for finer
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timeliness. Also, theoretical frameworks congested during the last four

decades on real-time scheduling algorithms confirm EDF to be one of

the best scheduling policies for timely critical embedded applications.

Based on all of these arguments, we expect EDF to perform better than

its alternatives, especially with a given periodic nature of the OFP.

Usually, Fixed Priority algorithms are relatively in a wide use in

industry. The reason for this is that fixed priority algorithms are simpler

to implement on top of the commercial kernels. A detailed comparison

between Rate Monotonic and EDF has been discussed by Buttazzo [3]

under several perspectives. Despite their advantages, dynamic scheduling

methods are not widely used in embedded real-time systems. During this

thesis we show by using suitable kernel mechanisms for time

representation and scheduling, EDF can be effectively used for enhance

system utilization and achieve a timely execution of periodic tasks for

the OFP.

The second approach we are going expand eCos kernel is thread

message communication domain. As at the previous point, need to make

this addition came from our OFP. It is consist of the six threads for

reading and writing data, and to execute control logic. In this scenario,

control logic and other five threads are in the sequential relationship,

which makes room for lock-free NBB communication mechanism. Here,

one group of the threads plays role of the producer and other consumer.

These producers and consumer together manipulate global data to

communicate with each other. Basically, eCos provides several primitives,

such as message boxes, mutex or semaphores to provide thread

communication mechanism. However, problem with them is their lock

based nature for the shared resource management. Instead, we are going

to use Non-Blocking Buffer (NBB) to achieve the same. NBB is

lock-free thread message communication mechanism, which provides

flexible retry-strategy selection for the designer to execute custom piece
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of code in various NBB states. NBB can have one of several states, such

as BUFFER_FULL, BUFFER_FULL_BUT_CONSUMER_READING, BUFFER_ 
EMPTY, BUFFER_EMPTY_BUT_PRODUCER_INSERTING (Figure <4-14>)

based on its status at particular time. Lock-free nature and retry

strategy flexibility enables us to have a efficient thread message

communication mechanism, thus offering us more responsive kernel with

less scheduler locks. In this way we will improve timeliness of our OFP

and eCos kernel in a whole.
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Chapter Ⅲ. Related works

My exploration of real-time scheduling implementation to add EDF on

eCos started at an early graduate study. It is almost two years.

However, the first seminal work in this domain was published at 1973

by Liu and Layland [1], which is almost half a century ago. At their

historic publication they defined and analyzed EDF and RM (Rate

Monotonic or Fixed Priority) real-time scheduling algorithms. Since that

vast amount of research material was produced, to examine and contrast

schedulers by several aspects, some of them came up with practical

implementations and results.

Lightweight EDF scheduling with deadline inheritance [8] is one of

works appeared in a literature. Their approach is to make EDF scheduler

targeted to be implemented in feather-light micro kernels. Generally, on

their design they require and limit application thread context switch to be

minimum, thus allowing application programmer to think of threads

behavior to be run-to-completion. In this scenario one thread enters

critical section blocking others and during execution no other thread can

preempt it. Mutual exclusion of shared resources is granted at system

level and programmer does not need to take care of synchronization:

processes are simply not scheduled by the system when there is a

potential resource conflict. However in our EDF implementation, we don’t

do any implicit assumptions and threads with higher “priority” are

allowed to preempt executing ones.

Another work [7] discusses combined implementation of EDF and FP

(Fixed Priority, similar to our MLQ scheduler) in Ada. They made good

mix, having efficiency from EDF and predictability from FP. Although

their approach and theoretical framework has a good foundation, they

implementation is in Ada programming language, it is not implemented
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as a standalone scheduling algorithm in RTOS kernel.

Our idea of the NBB is originated from the paper published by K.H

(Kane) Kim et al. [2]. They illustrated lock-free mechanism for event

message communication for distributed computing objects and other

domains. We followed that concept to extend our eCos kernel with

additional thread communication mechanism to achieve less locks at

shared resources control, achieving more responsive kernel.

Generally, there is only one non-blocking event message exchange

scheme that uses a circular buffer and appeared in literature [4]. NBB

authors explain NBB to have the following advantages. First, a consumer

thread can be designed to perform a retry strategy that better suits the

specific characteristics of the real-time application under development.

Secondly, its implementation does not require use of complicated

atomically executing machine instructions other than simple integer write

and integer read operations. Other proposed non-blocking schemes for

exchanging event messages are based on the use of linked lists [5] and

they incur higher overhead.

Paper [4] introduces Non-blocking FIFO queue for the multiprocessor

systems. Basically, they address three points, where lock-based

mechanisms fail to efficiently control shared data. They are:

§ They avoid convoys and contention points (locks);

§ They provide high fault tolerance (processor failures will never

corrupt shared data object) and eliminates deadlock scenarios, where two

or more tasks are waiting for locks held by others;

§ They do not give priority inversion scenarios;

They introduce simple mechanism to overcome above three problems,

by their non-blocking FIFO queue. Generally, their target apply domain

differs from ours (they are addressing lock-free operations on shared

data between multiprocessors, but we between threads in uni-processor

systems). But, relevant and interesting part of this work is clear
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illustration of non-blocking mechanism to outperform their lock-based

counterparts. Another work [21] illustrates benefits of the non-blocking

object sharing approaches in uni-processor systems and with the use of

schedulers to bound interference of threads. However, their approach is

simply retry-again, in case of failure to access shared data, while our

NBB has advantage of providing NBB designer with custom

retry-strategy when buffer is not available due to some reasons.
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Chapter Ⅳ. Our approach and solution

In this section we will provide detailed explanation of our work.

Before moving to the explanation of our approach and solution in detail,

we will briefly explore eCos itself, its kernel and schedulers, which are

prerequisite knowledge needed by all other coming chapters.

eCos is Open Source RTOS available under GNU General Public

License [9]. Mainly it is known for its high customization and low

memory footprint in target image [10]. eCos kernel is programmed in

C/C++ language and kernel developers are provided with handy resources

to make their own modifications and/or customization. Also, it has

compatibility layers and APIs for POSIX and µITRON, also support for

dozens of platforms and architectures [9, 10].

<Figure 4-1> GUI eCosConfigTool

eCos designed to be highly customizable to meet application

requirements and hardware needs. It is achieved through GUI tool called

as eCosConfigTool. It enables developers to have a kernel with specific
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features needed by a particular application. Currently, the latest stable

release eCos 3.0 by March 2009 includes more than several hundred

configuration points [10]. Snapshot of eCosConfigTool is illustrated in the

Figure <4-1>. Here, application developer is provided with class

configuration points, grouped under similar characteristics. Figure above

shows options of the eCos HAL (Hardware Abstraction Layer), I/O

sub-system, Infrastructures, kernel and so on. In our work, we are going

to add support for the EDF scheduler under eCos kernel schedulers and

NBB message communication mechanism under kernel synchronization

primitives option groups.

eCos 3.0 release includes two completed and one ongoing kernel

scheduler. Full supported algorithms are Bitmap and Multi-Level Queue,

and ongoing one is implementation of Lottery scheduler by eCos

developers. Starting from an early release eCos came with a static

priority scheduling algorithm, shown as a “Bitmap” in the Figure <4-1>.

Bitmap is static scheduling policy, where application programmer is

supposed to provide unique priority for each application thread. As eCos

keeps all extant threads as a double linked list and uses 32-bit integer

variable to easily locate highest priority one, application programmer is

limited to have maximum 32 threads. Moreover, there are two system

supplied Main and Idle threads, which reserve priority 8 and 31 by
default.

Limitation to the number of application threads lead to the addition of

the Multi-Level Queue (MLQ) scheduler. In this scheduler application

programmer can have several threads (32 by default) at the same

priority. Currently, thread execution order can not be pre-determined if

there are two or more threads at the same priority competing for CPU

time. Again, in the source code implementation, kernel uses 32-bit integer

variable to easily locate the highest priority thread, which makes us to

have up to 32 priorities.
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During our research we added EDF scheduler keeping standard way

to add new scheduler support for eCos kernel [10]. Now, application

programmer is free to choose one of three schedulers, including EDF

from GUI eCosConfigTool based on its application requirements, Figure

<4-2>.

<Figure 4-2> EDF scheduler in eCosConfigTool

Generally, eCosConfigTool defines each configuration option as a

unique Macro in the specific files manipulated by it. In our case, EDF
scheduler macro is CYGSEM_KERNEL_SCHED_EDF as it is shown in the
left side of the figure above. Once application programmer enables this

option, it will have an appropriate value in the header file. Thus,

respective EDF specific code will be included into the target image.

4.1 Kernel extension design approach

There are various EDF implementation approaches appeared in a

literature [7, 8]. Although, implementation approach may differ for various

RTOSs, but in general, EDF is expected to have a higher CPU utilization

and efficient scheduling. In our implementation we put EDF scheduler

backbone down to the kernel data structure level and started to build
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additional supports [12]. In this way we have used MLQ scheduler

specific codes for scheduler-independent kernel primitives, such as timing

(clock, alarm, counter and etc.) and inter-thread communication (mutex,

semaphore, message box and etc.) mechanisms. Our attitude was to

make the EDF specific modifications wherever it is required by EDF

concept. Figure <4-3> illustrates the approach we have followed for our

implementation.

<Figure 4-3> eCos-EDF kernel

As it was mentioned before, for EDF development we used latest

stable version of eCos 3.0. In addition to Multi-Level Queue (MLQ) and

Bitmap scheduler, we extended eCos kernel with EDF scheduling policy.

eCos kernel source code exploration enabled us to see kernel object and

their relationship. Based on these knowledge, we added EDF specific data

structures as it is illustrated in the Figure <4-4>. We added EDF

specific:

cyg_tick_count deadline_tick_cnt;
cyg_tick_count wcet_tick_cnt;
cyg_tick_count period_tick_cnt;

fields to our each Cyg_Thread via its parent class Cyg_SchedThread_ 
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Implementation class. As each eCos scheduler has its own

Cyg_SchedThread_Implementation class implementation, we made our
in EDF header and source files (Figure <4-9>).

<Figure 4-4> eCos-EDF classes and their relationship

Also, we put EDF scheduling logic in schedule() member function
of Cyg_Scheduler_Implementation class, Figure <4-5>. More details
will be explained in the next section.

<Figure 4-5> eCos-EDF scheduler logic code
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Now, we will move to the explanation of design approach for NBB.

Generally, all Operating Systems provide several thread communication

mechanisms for the various scenarios. The most widely used are

message boxes, mutex and semaphores. However, problem with them is

their lock based approach for the shared resource management. All of

them follow lock-based technique to control shared data. As it was

explained in the section about OFP characteristics, it is consists of six

threads, communicating through global buffer. Current OFP source code

uses mutex for thread communication, which makes our whole code to

be lock dependant, degrading system performance and timeliness. Instead,

we are going to use Non-Blocking Buffer (NBB) for the thread

communication. NBB is lock-free thread message communication

mechanism, which provides NBB designer flexible retry-strategy selection

capability to execute custom piece of code that better suits the specific

characteristics of real-time application under development. Once we will

be able to provide lock-free thread communication mechanism for our

OFP, we will have less scheduler locks, having more room for other the

urgent computation to be executed earlier. In this way, we will have

indirectly positive impact on timeliness of the OFP and our kernel in

general.

The NBB is a circular FIFO queue that facilitates the communication

of event messages from a single producer thread (PROD) to a single

consumer thread (CONS) without causing any party to experience

blocking [2]. High-level view of the system is illustrated in the Figure

<4-6> (used from [2]).
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<Figure 4-6> High-level view of the NBB

As it can be seen from the figure above, NBB uses two integer

variables, which are Update Counter and Acknowledgement Counter
to provide control of the shared buffer items. There is a third variable

Recycle Counter to control the items already consumed from the

buffer, so called Defunct Item. The underlying mechanism for NBB to
execute critical operations without locking is achieved through those

three variables. Variables should be defined in such a way, where their

read or write operations are done via single processor instruction. Thus,

we will not have an uncompleted operation left after each processor

instructions. Generally, the purpose of the lock is to maintain data

consistency at runtime. But in NBB, as we don’t have any instructions

executed in two steps (no operation is executed in the middle of single

integer read and write operation) we will have totally consistent data.

With our kernel source code knowledge, we designed NBB to have

template and actual object class. Abovementioned four critical single

instruction integer class member variables were put into the Cyg_NBBt
template class (Figure <4-7>). Required put() and get() member

functions were implemented at Cyg_NBB class. NBB source and header
files contain Template and Class codes, Figure <4-9>.
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<Figure 4-7> NBB Template and Class

The approach we followed to add NBB support to our eCos kernel

was standard way of kernel extension [10]. First we added appropriate

configuration options in eCosConfigTool and further we built necessary

support in eCos kernel itself. Implementation details are illustrated in the

next sub-chapter.

4.2 Implementation details

In this chapter we will illustrate our implementation in a

comprehensive way. We will start from EDF implementation details and

based on skills gained during this step, we will be able to make ease

transition to the NBB source code details.

Before going to deep in details, we will briefly illustrate our

development environment. Our development OS is Linux Ubuntu™ 9.4

distribution [13] and SciTe text editor to edit C/C++ source codes [14].

When user downloads eCos 3.0, it comes with all packages and libraries

for all target platforms and architectures. It is called as "eCos

repository”. In order to make our target specific library, we should

execute ecosconfig new pc command to the Ubuntu Terminal and we
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will have desired eCos library. eCos repository, target specific library and

EDF application development folder structure is depicted in the Figure

<4-8>.

<Figure 4-8> eCos-EDF development folder structure

During eCos-EDF implementation we edited several configuration files

and source files, and added new files by the need. All of them are

illustrated in the Figure <4-9>. As it can be seen from the figure below,

there are only one header file and source file was added to the eCos

repository. All other files were only modified according to EDF

requirements. Other than header and source files, there are two files with

“cdl” extension, which are responsible to control eCosConfigTool options.

“cdl” stands for Component Description Language. We added EDF

scheduler option to the scheduler.cdl file, making one additional note
in kernel.cdl file to add EDF specific option at the compile time of
our kernel.
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<Figure 4-9> Modified and added EDF specific files

From now on we can start to dig deep into EDF specific code

implementation. As we mentioned above, we put EDF scheduler

backbones to the kernel data structures. Basically, EDF requires thread

to have three properties, deadline, worst case execution time (wcet) and

period [11, 12]. The EDF requires each thread to have its deadline value

represented in RTOS specific time units. In the case of eCos it is clock

tick generated by the hardware (HW) clock interrupt. With Hardware

Abstraction Layer (HAL) eCos provides 100 Hz tick frequency for all

platforms. As our OFP application does not require any higher clock

frequency, we will keep this unchanged. Application programmer is free

to have a custom clock frequency via system supplied resolution set

mechanism. Basically, eCos clock tick count is used as a primary

synchronization unit for the thread alarms, delays and suspends. Thus, in

order to keep interoperability with other kernel primitives, we also

designed EDF fundamental data structure to be in target specific clock

ticks:



- 22 -

struct cyg_sched_edf_info_t {
  cyg_tick_count deadline_tick_cnt;
  cyg_tick_count wcet_tick_cnt;
  cyg_tick_count period_tick_cnt;
}
This C structure with three properties was added as a kernel data

structure, to the kapi.h header file, where cyg_tick_count is wrapper
type for long int of C language. We added the same structure to the
thread control block (TCB) of eCos, where <cy4>. In this way each

thread will have thread's deadline, wcet and period as it is required
by the EDF.

<Figure 4-10> EDF specific properties in TCB

In the Figure <4-10> it is illustrated EDF specific codes (316-325

lines) to be inside its macro CYGSEM_KERNEL_SCHED_EDF. The macro is
controlled by eCosConfigTool. Lines from 320 to 322 illustrate EDF

specific thread options in clock ticks. Application programmer is supposed

to provide accurate values for the thread’s {deadline, wcet, period}
triple in milliseconds during its creation time. All these three are supplied

into the kernel's cyg_thread_create() thread creation method and put
into the TCB as a thread’s native property (Figure <4-12>).

In eCos all of the threads are in the "suspended" state once they are

created. Thus, application programmer needs to explicitly call
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cyg_thread_resume() function to make them ready and start

execution. Based on this split mechanism to create thread and make it

available for the scheduler, we made additional edf_prep() function for
the application programmer to make a call to it between thread creation

and resume. This is done through call to the cyg_prestart() function
in the prestart.cxx source file inside infra package illustrated in the
Figure <4-9>. This function is middle execution step provided by the

eCos for the application programmer to initialize custom packages if there

is any. If there is no, this function simple passes execution to the next

function, without doing anything inside. Figure <4-11> illustrates

modified version of this function. Call to the edf_init() (which 

redirects call to edf_prep()) EDF preparation function is shown in

line #90.

<Figure 4-11> Call to the EDF preparation function

This call-in-the-middle is the very right place to execute special

piece of code, to achieve two major objectives. The first is to interpret

user provided millisecond values into the platform specific clock-tick

units in TCB. Hence, we will get platform-independent timing

mechanism. The second objective is to make scheduling feasibility test,

which is explained in the coming section. Below is the source code

excerpt from edf_prep() to achieve the first objective:
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<Figure 4-12> Scheduling feasibility test

Lines from 664 to 666 are converting millisecond values to the system

specific clock ticks. Here, thread->edf_info contains user supplied

values in milliseconds. Division to the current board specific milliseconds

per system HW clock tick will give us their tick represented values.

Lines 658-660 used to eliminate system default (Idle and Main) threads
to be assigned priority based on EDF specific values (deadline, wcet, 
period). Because only these two threads are considered to be the
system thread and they have eCosConfigTool specified priority values in

the macro named CYG_THREAD_MIN_PRIORITY and CYGNUM_LIBC_ 
MAIN_THREAD_PRIORITY respectively. if condition used to isolate EDF
specific scheduling scheme from system owned threads.

After the initial execution, we will keep decreasing thread’s

deadline_tick_cnt value for the all TCBs at each clock tick. As
scheduler returns the thread with the smallest deadline value, we will

have purely EDF scheduling sequence. Once thread finishes execution, we

will remove it from the ready list and whenever it becomes ready, we
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will assign new deadline value for deadline_tick_cnt as we did in
edf_prep(). But, this time we do this only for deadline_tick_cnt
not for the wcet_tick_cnt and period_tick_cnt, Figure <4-13>.

<Figure 4-13> Newly joined ready thread

Code in the figure above is located in the resume() function of the
Cyg_Thread class. The reason why it is put there is that, resume() is
the only function which makes thread into the ready state and appends it

to the scheduling queue. As we put new value of the deadline just

before thread joins the queue, it matches exactly what we want to

achieve. Code in the lines from 608 to 610 does the same as it was

explained for the Figure <4-10>. Code in the line 612 shows new

deadline value of the thread, based on its period and wcet.
Now, we have finished explanation of eCos-EDF and we can make

slight transition to NBB implementation path.

<Figure 4-14> NBB development folder structure
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As it was in the case of EDF, for NBB we made underlying

development folder structure first. It is illustrated in the Figure <4-14>.

We created totally independent and new development settings (than we

had for eCos-EDF) for eCos-NBB library and eCos-NBB repository.

However, backbone folder structure is similar as it was for eCos-EDF,

Figure <4-9>. As it can be seen from the Figure <4-14>, together with

modification of existing kernel files, we created four more custom source

and header files in appropriate folders. Here, nbbt stands for NBB
Template, serves as a base template class when creating NBB instances.

This is derived from eCos kernel synchronization primitive creating

convention [10] and it is to provide flexibility for application programmer

to define type of the items to be controlled by or stored at NBB circular

buffer (Figure <4-19>). Generally, existing synchronization primitives,

such as message box can be used to exchange all data types, including

int,ferng, double, char, void* and so on. Via template class, we
can provide application programmer to select data type that better suits

application needs under development. For this reason application

programmer should create NBB class object specifying data type in the

template type (Figure <4-19>). In our NBB implementation, scenario is

much different. NBB items are exchanges as a void * pointers, which
can point to the any data type, and circular buffer slot is considered to

store pointer address values only.

<Figure 4-15> NBB properties in eCos kernel 

Figure <4-15> illustrates items to be stored in a variable called

itemqueue, which is an array with CYGNUM_KERNEL_SYNCH_NBB_QUEUE 
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_SIZE number of void* elements. The macro name and other variables
are explained in the consequent paragraphs.

As we did for the EDF implementation, for NBB implementation first

we added NBB specific GUI configuration options in eCosConfigTool. We

added NBB control option points next to the other shared data

management tools, such as mutex, semaphore and message box. In eCos

they are called as a “kernel synchronization primitives” and they are

located under respective option group in eCosConfigTool, Figure <4-16>.

<Figure 4-16> NBB in eCosConfigTool

As it can be see from the figure above, there is two configuration

points in eCosConfigTool. First one called as “Use NBB for thread event

mess exchange”, which is used to either enable or disable NBB specific

code in kernel. Once we disable this option, resulting eCos library will

not contain NBB specific code and application programmer will not be

able to use any NBB specific API. The second NBB specific option is to

used to set number of slots in the NBB circular buffer, in the other

words in will set the value for CYGNUM_KERNEL_SYNCH_NBB_QUEUE_ 
SIZE macro, thus defining size of the array in Figure <4-15>. In the
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Figure <4-16> this option is called as “Non-blocking buffer queue size”

and has a value equal to 21.

In the Figure <4-15> there are four variables defined as uc,
last_uc, ac, and last_ac to be used for update counter, last value of
update counter, acknowledgement counter and last value of the

acknowledgement counter respectively. As we have mentioned early in

this chapter and as it is explained in [2], in order to keep lock-free

mechanism, operations done on these variables should be single

instruction processor operation. In our implementation, we used

cyg_uint32 kernel specified data type, which is made of 32-bit

unsigned integer. As we use 32-bit processor in our embedded board, all

operations on this data type is guaranteed to be single processor

instruction. In this way we achieve atomicity of our NBB specific

operations, as it is required by NBB concept [2].

One of the main advantages of NBB is flexible retry-strategy NBB

designer is provided. Designer is free to set custom action that better

suits the specific characteristics of real-time application under

development in various NBB states. NBB can have one of several states,

when buffer is full, consumer in the middle of the having, buffer is

empty or producer is inserting. In all abovvarises, NBB designer can

define various solutions based on NBB status at the particular time. In

our implementation, this feature is provided via of addition of special

enumeration in the kernel data structure, Figure <4-17>.

<Figure 4-17> NBB states enumeration 

cyg_nbb_stat_t enumeration type is return type for our core NBB
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writer and reader functions in the template. Values from the line 315 to

317 could be return value for writer and the other three for reader

function. Based on NBB status values our retry-strategy-selection

(explained in the next paragraph) functions will execute custom piece of

code.

In our solution, we have provided three layer of control for NBB

writer and reader functions. The first two for both writer and reader are

to do respective task inside kernel space. The other one is NBB API for

application programmer to make use of NBB. For the writer, kernel

space functions are put() at Cyg_NBBt template class (Figure <4-18>)
and Cyg_NBB retry-strategy-selection class (Figure <4-19>). For the

reader, it is get() functions at respective classes as in the above case.

<Figure 4-18> Writer and reader functions definitions

As we can see from the figure above, put() function takes two
arguments, first is ptr_to_item pointer to item to be put in the next
available slot in circular buffer and the second is defunct item

def_item, which is the item already consumed by reader. Although,

NBB provides mechanism to manage defunct items, in our application we

don’t have a need for this feature. Thus, in order to be fully compatible

with NBB mechanism, we added this feature to our core template

function. However, our current implementation just ignores returned

defunct items. Figure <4-19> illustrates definition of retry-strategy-

selection put() function in Cyg_NBB class. It takes only a pointer to the
item going to be inserted in the next available slot and returns booleain
triable to the application. The reason why we called Cyg_NBB class
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member functions as a retry-strategy-selection one is, here as an NBB

designet ae can defineetryticular strategy to be done in specificcatio

n. Te (Figure <4-17>). In our initial solution, we followed simple way.

We return true only if Cyg_NBBt core put() function returns

INSERT_DONE, while in other two cases we return false to the

application programmer. As our core template function operates purely by

NBB concept (returning specific enumeration value at each NBB states),

we can easily adapt to future development needs, modifying

retry-strategy-selection function (Cyg_NBB’s put()) accordingly.
NBB reader is defined as get() function in Cyg_NBBt core and

Cyg_NBB retry-strategy-selection class. As in the case of NBB writer,
core get() function (line 77, Figure <4-19>) is implemented based on
pure NBB concept. It returns one of cyg_nbb_stat_t enumeration

values depending on item availability at NBB circular buffer, in the

address of variable supplied at its argument list. This core function is

called by our second layer NBB design (so called retry-strategy-

selection) function, illustrated at line 81 of Figure <4-19>.

<Figure 4-19> NBB retry-strategy-selection functions

Depending on the return value of the core function, we are able to

define our design. As it is illustrated in the above figure, get() function
of the Cyg_NBB class returns address value of the item and boelean
variable in its supplied argument variable address. Once again, as it is

our initial implementation stage, we have follwed simple approach at

retry-strategy of the NBB reader in Cyg_NBB class, Figure <4-19>. It
returns pointer to the next available item, indicating its success or failure

in the address of the supplied boolean variable. We return true in case
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of result of core get() function is READ_DONE (Figure <4-17>), in
both of the other two enumeration values we will return false. This
boolean value is provided for the third layer function, which considered

as an NBB API (explained in the next paragraph). It is worth to explain

code line 77 in the Figure <4-19>. There we create an instance of NBB

template to be generic pointer type, which indicates slots of the circular

buffer to hold pointer to any data type.

We created several API to enable NBB usage by application

programmer. Generally, eCos API is located in kapi.cxx source file,
under common folder (Figure <4-14>). We followed the same design and
appended NBB API in the same file. Currently, NBB API consists of

three functions to create, read and write NBB items (Figure <4-20>).

Once there is a need for additional API to make wider use of NBB, we

can easily append them here.

<Figure 4-20> NBB API

cyg_nbb_create() gets to arguments, first is handle to the created
NBB, which is returned to the application programmer to perform write

and read operations later. The second argument is memory space

provided to this NBB. In order to insert item to the NBB circular buffer,

user provides NBB handle and pointer to the item to be inserted. Once

write is success cyg_nbb_put() will returns true, if not false. Line
946 at Figure <4-20> is to perform read operation from NBB. For that

user gives handle to the NBB, where item will be read from. If item is

available and we could read it successfully, this function will return
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pointer to the item, in other case it will return NULL.
In this point we finished implementation details to add EDF and NBB

in eCos kernel. Interested reader can request author for more

comprehensive explanation.

4.3 Scheduling feasibility test

In Real-time embedded computing systems, scheduling feasibility is

considered to be one of the minor areas of the research [17-20]. There is

no general approach to make feasibility test for all systems. For example,

it will be different for fixed-priority, dynamic-priority scheduling

environment or preemptive or non-preemptive kernel [16]. We found

research [8] to be very similar with ours. They illustrate theoretical

approach to be practical with a given properties of user supplied thread

information. However, in our work we made practical implementation and

testing via eCos RTOS kernel.

We have done simple mechanism to make scheduling feasibility test.

Here, user is supposed to supply thread specific information at the time

of thread creation. Generally, as we explained in the EDF implementation

chapter, there are three EDF specific properties supplied thread creation

time. They are deadline_tick_cnt, wcet_tick_cnt and

period_tick_cnt, to indicate value of deadline, WCET and execution
frequency of the thread respectively. However, only last two properties

provided by the application programmer used to make the schedulability

decision. If application fails to pass the test, kernel rejects it to run after

prompting with an appropriate message about non-feasible schedule.

Simple way to make feasibility test is to check CPU utilization. It is

obvious that utilization can not exceed 100%. It is made easy with EDF

specific thread properties. It can be illustrated with following calculations.
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In this equation T represents thread and U processor utilization.

Theoretically EDF can have up to 100% CPU utilization [11]. Based on

this assumption, we take division of wcet_tick_cnt over period_tick 
_cnt to obtain CPU fraction consumed by the each thread. We sum all
division values and compare it to be less then one, which means total

CPU utilization must not exceed 100%. This is source code excerpt from

edf_prep() which was explained in the previous sub-section:
sum+=(100*thread->edf_info->wcet)/thread->edf_info->period
We keep doing the same computation inside a while loop for each

application threads. If sum’s value exceeds 100, it indicates CPU

utilization to be higher than hundred percent. This obviously results to

non-feasible schedule and causes application rejection. An exact source

code excerpt is illustrated in the Figure <4-9>. As it can be seen in the

lines from 673 to 677, if sum exceeds 100% threshold, kernel will stop

execution prompting user with appropriate message “Non-feasible

schedule, pls correct thread’s wcet/period.” However, the most critical

part in this approach remains accurateness of the wcet value [7, 8]. We
presume complexity of having pre-determined wcet for the particular
thread. Especially, it is very hard and almost impossible in dynamic

preemptive environment. We are addressing this issue to be solved by

experimental approach and we keep it as our future work.
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Chapter Ⅴ. Experimental results

In this chapter we will illustrate experimental results for EDF and

NBB kernel. Both of them are implemented in eCos kernel and tested

with various scenarios of producer-consumer applications, while MpSc

(Multiple Producers and Single Consumer) being OFP prototype

application.

5.1 eCos-EDF performance

EDF scheduler is expected to be more efficient, thus resulting to

better kernel characteristics in several points. In our case it is mainly

two points, they are re-scheduling needed and preemption introduced by

an application. We tested our eCos-EDF kernel for the combinations of

Producer-Consumer application, which appears in most of the mainstream

computer science textbooks. Below we will illustrate experimental results.

The reason why we compared EDF with MLQ scheduler, is their

similarity. As we stated in eCos schedulers explanation section, currently

there are only two scheduler policies available in eCos kernel, Bitmap

and MLQ. Since Bitmap is static priority thread with one thread per

priority, it would not be correct to compare EDF with Bitmap. Also, in

Bitmap it is very simple and straightforward to find the highest priority

thread, thus we will execute our logic with less overhead. On the other

hand, MLQ keeps several threads in the same priority and makes

scheduling decision based on ready thread queue, which is similar to

EDF, thus more acceptable to compare.

Basically, we have a full right to make an assumption to have similar

results with [3]. There authors made comparison between EDF and RM

scheduler. RM falls under the static priority scheduling group, where
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threads are assigned fixed priority based on their execution frequency [3].

MLQ too belongs to the same group; the difference is only that, in the

MLQ scheduler application programmer is supposed to assign unique

thread priorities based on his/her preexisting knowledge about application

behavior. When we tested eCos with the EDF and MLQ scheduler and

had similar indicators when number of threads is less and CPU

utilization is low as it is illustrated in Figure <5-1>.
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<Figure 5-1> MLQ and EDF in SpSc

Figure above illustrates EDF and MLQ kernel performance with

Single producer and Single consumer (SpSc) application. For all tests

Loop Count on axis X is the number of items produced by each

producer thread. Axis Y represents number of thread switches introduced
by an application. Here, overlapped lines means SpSc application had the
same performance in both kernels. The reason for the same performance

is in the number of threads in application. Only two threads will not

make big differences for the MLQ and EDF scheduler, thus having the

same characteristics.

As we increase the number of threads, thus having higher CPU

utilization, we start to notice the difference between two schedulers,

Figure <5-2>. In this test we have five producers and one consumer

thread. As we can see from the figure below, when Loop Count is 500,



- 36 -

which means each producer produced by 500 items, resulting to 2500

items for five threads, we have around 3000 context switches in MLQ,

while in EDF it is about 2500, resulting to more than 15% performance

improvements for this point.

MpSc (5p1c) with MLQ and EDF scheduler
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<Figure 5-2> MLQ and EDF in MpSc

As we continue to increase the number producer and consumer

threads, we will have far different picture in two kernel schedulers.

Figure <5-3> illustrates five producer and consumer threads’

performance. Here we have almost 30% improved kernel performance in

terms of thread context switch when loop count is equal to 100.
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<Figure 5-3> MLQ and EDF in MpMc

Another point where EDF performs better is the number of

preemption in kernel. It is indirect positive shape of less context switch.

Preemption occurs when ready higher priority thread preempts executing
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lower one and takes CPU ownership, resulting for the lower priority

thread to sleep. So, more preemption means the more thread sleep and

wake calls, and vice versa. As above figures illustrated less context

switches, we will have proportional decline in amount of thread sleep. It

mean most of our threads are completing their execution in a one run,

without sleep, thus offering a solid deadline keeping feature. As our OFP

prototype application is MpSc we made several additional experiments on

that. Two of them are illustrated in Figure <5-4> and Figure <5-5>.
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<Figure 5-4> MLQ and EDF in MpSc

Figure above the case when number of producer threads increased to

15. Interesting point is regardless number of producer threads (Figure

<5-2> and Figure <5-4>) as we produce more than 500 items per

producer thread, Thread Switch Count will remain to be decreased about

25% in EDF than it is in MLQ.
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MpSc (15p1c) with MLQ and EDF scheduler
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<Figure 5-5> MLQ and EDF in MpSc

Figure <5-5> illsutrates MpSc application with 15 producers and 1

consumer with higher frequency than previous figure. In last figure

period of producer threads were decreased to 100 msec, while in the

figure <5-4> it was 250 msec. Thus, even in high frequency with tough

competition for CPU, EDF will provide more than 20% less thread

context switches in eCos kernel.

5.2 eCos-NBB performance

Generally, message communication solutions that introduce blocking

are penalized by locking that introduces priority inversion, deadlock

scenarios and bottlenecks. The time that a process can spend blocked

while waiting to get access to the critical section, can form substantial

part of the algorithm execution time [4]. Once we will be able to provide

lock-free thread communication mechanism for our OFP, we will have

less scheduler locks, having more room for other the urgent computation

to be executed earlier. In this way, we will have indirectly positive

impact on timeliness of the OFP and our kernel as a whole.

In order to test our NBB with the application sharing similar

characteristics with OFP, we tested it with producer-consumer

application. Figure <5-6> illustrates our NBB compared with eCos
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Message Box (MBox) in terms of scheduler locks.
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Figure <5-6> NBB VS MBox in SpSc

MBox is one of the message communication mechanisms provided by

eCos kernel [22]. In this application, single producer and single consumer

(SpSc) threads share the same MBox to exchange messages. As it is

indicated in the X axis, totally 100 items were produced and consumed
by our producer and consumer threads. Y axis represents number of

locks introduced by application at runtime. As we lock the scheduler in

the critical section (read or write) of the MBox, we are expected more

scheduler locks than it is in NBB (it does not uses locks). As we can

see in the Figure <5-6>, scheduler lock count is slightly less than it is

in MBox. The reason, why have this amount of locks is, scheduler lock

is introduced not only by message communication mechanism, but from

all part of the kernel. Scheduler is locked when ASR or ISR is set,

thread are made ready, deleted, slept, woken up, suspended, resumed,

alarm is created or triggered and etc. As we have all part of the kernel

is the same except message communication mechanism, we assure lock

difference is introduced by NBB and MBox only. It should be noted that,

via single producer and single consumer it is not so illustrative to have

different kernel behaviors with two mechanisms. The reason is illustrated

in the Figure <5-7>.
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In single producer and single consumer, threads have bigger delta

time (indicated as X in green) between write and read operation of the
items, Figure <5-7>. The difference could be more visible, once we will

execute NBB as in the Figure <5-8> scenario. To achieve this, we

created multiple producers and single consumer (MpSc) to communicate

with a shared NBB. In this case dense competition between producers

will introduce more scheduler locks, Figure <5-9>.

Figure <5-7> NBB with less thread interference

In single producer and single consumer, threads have bigger delta

time (indicated as X in green) between write and read operation of the
items, Figure <5-7>. The difference could be more visible, once we will

execute NBB as in the Figure <5-8> scenario.

Figure <5-8> NBB with high thread interference

To achieve this, we created multiple producers and single consumer

(MpSc) to communicate with a shared NBB. There are five producer

threads in the top, indicated with different colors and T1, T2, T3, T4 and
T5. All producer threads are running in 10 millisecond frequency (one
item is produced in 10 ms) and they have the same priority equal to 4.

There is only one consumer thread T6, running on 2 ms frequency and
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in relatively less priority than producers. Consumer thread has priority

value equal to 4. In this scenario, there will be more intereference

between consumer and producer threads, thus introducing more scheduler

locks via dense competition than in NBB, Figure <5-9>.
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Figure <5-9> NBB VS MBox in MpSc

We created five producer and single consumer thread communicating

via single instance of NBB. As we expected, difference in the number of

scheduler locks will increase as we continue to increase number of items

exchanged via NBB. Figure <5-9> shows number of locks to be almost

same, when number of produced items by each thread is equal to 5,

resulting to 25 produced items by all five threads. However, once we

increase number of produced items to 25 by each thread (resulting to 125

items by all five) we will notice almost 35% less scheduler locks on

eCos-NBB. It means our NBB based kernel is 35% responsive than it is

in MBox, which will allow eCos-NBB kernel to have finer timeliness to

execute timely critical operations. Also, we observed execution time of

NBB and MBox based message communication mechanisms remained

almost the same (less than 1% difference) during all experimental tests.

As it was mentioned in the second chapter, OFP has shared

characteristics with multiple producers and single consumer thread. Based

on this, we can conclude similar performance improvements will be

achieved at eCos-NBB-OFP.
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Chapter Ⅵ. Conclusions

In this work we addressed two issues to enhance RTOS kernel. They

are extension of eCos kernel with efficient EDF scheduler and lock-free

message communication mechanism called NBB.

We briefly summarized real-time scheduling, eCos itself and its

schedulers and provided definition of the problem. Next, we explained our

experimental OFP application characteristics carrying real-time

computation for small UAV. Also, need for and suitability of EDF and

NBB were explained with given periodic characteristics of our practical

application, which prototype application was built based on. Related

works were discussed with their similarities and difference in

implementations and targeted domain. We illustrated fundamental data

structure we have used to build EDF scheduling and explained important

techniques used during implementation. Implementation details were

accompanied with a source code skeletons where it is inevitable. Next,

we presented our simple mechanism to make scheduling feasibility test.

NBB implementation was also illustrated from the scratch, together with

development environment, tools and with the source code skeletons.

Both of our solution were implemented in eCos kernel and tested with

various scenarios of producer-consumer applications, which shares

practical OFP characteristics. Solutions are provided with an appropriate

experimental result. Although we don't illustrate direct implementation

and experimental results for our real OFP, we built our prototype

application sharing most of the characteristics and computational nature

to be as it is in real OFP. Thus, implementation and experimental results

illustrated for our prototype application will confirm kernel enhancements

to be true for our real OFP as well. Future work will be to implement

and experiment eCos-EDF and eCos-NBB in our real OFP.
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