
Towards Optimal Resource Management for Cloud

Data Centers

Shahnaza Tursunova, Tae-Ho Lee, Nodir Kodirov, and Tae-Sang Choi

Electronics and Telecommunications Research Institute (ETRI),

Yuseong-gu, Daejeon, 305-700, South Korea

{shahnaza, kthlee, nodir, choits}@etri.re.kr

Abstract—As virtualization technology matured, the concept of

virtual network environment has emerged. Because of the

flexibility of virtualization, the cloud computing services can

serve various needs of its customers more efficiently. However,

in most current virtual network provisioning algorithms,

decisions are made without any consideration of underlying

network resource states. In this paper, we are focusing on

combined optimization of resources in the application and

network stratums, and proposing an efficient and optimized

resource provisioning algorithm and show its benefits over

traditional resource allocation.

Keywords- cloud computing, graph clustering, optimal resource

provisioning

I. INTRODUCTION

Cloud computing promises to reshape the way IT service is
produced and consumed by virtualizing computing resources
(CPU, storage, and network). Virtualization enables flexible
management of the computing resources, which allows
dynamic service offerings based on various needs of the cloud
customers. Among many different aspects of cloud computing
management issues, such as monitoring and on-line fault
management, we focus on the provisioning of computing
resources since we believe that the optimal resource
provisioning algorithm is the first step to fully utilize the cloud
computing infrastructure.

Resource provisioning in the cloud data centers falls into
the broad category of the Virtual Network Embedding (VNE)
problem which tries to optimally map a user’s request, known
as the virtual network (VN), to a substrate network (SN). This
problem has been widely studied [1-7]. Moreover, QoS related
parameters, such as latency, jitter, and packet loss, become
more important in the cloud service provisioning. However,
many decisions are made in the application space without
considering underlying network and cross stratum
application/network optimization (CSO) efforts were proposed
to focus on this challenges [16] .

In this paper, we introduce a CSO-aware graph clustering
based resource provisioning algorithm for the cloud data
centers. The graph-clustering algorithm is based on the
algorithm proposed in [15]. In addition, we incorporate a
hierarchical clustering algorithm to extend our provisioning
algorithm.

The paper is organized as follows. Related work is provided
in Section II. In Section III, we introduce our provisioning
management architecture and use cases of CSO-aware VN
provisioning. The problem definition and the proposed
algorithm are given in Section IV and V, respectively. A
simulation result and analysis is provided in Section VI. Then
final concluding remark with description of our future work is
given in Section VII.

II. RELATED WORK

A. Cross-Stratum Optimization

Cloud applications are used to provide a wide variety of
services such as video gaming, social networking, grid
applications and others. Such applications make substantial
bandwidth demands on the network. In addition these
applications (e.g., VoIP or HDTV) may require specific bounds
on QoS related parameters, such as delay and jitter. However,
many end user applications and services cannot efficiently
utilize the network, nor can achieve the desired QoS due to
lack of cross-interaction between cloud providers and substrate
network. Cross-stratum optimization (CSO) was presented to
focus these challenges [16]. The main objectives of CSO are i)
resource optimization, ii) quick response to changing demands,
and iii) QoS provisioning through better usage of application
and network information. By taking these opportunities of CSO,
in this paper, we enhance resource provisioning algorithm via
CSO for cloud data centers.

B. Virtual Network Embedding

Virtual Network Embedding (VNE) to a substrate network is
known to be a NP-Hard problem [1]. One of the most common
Virtual Network Embedding (VNE) to a substrate network (SN)
is known to be a NP-Hard problem [1]. Generally, VNE
problem is divided into two phases: node mapping phase and
the link mapping phase. However, even the two phase
approach is still computationally intractable. The node
mapping onto the SN that honors the bandwidth constraints is a
multi-way separator problem, which is NP-Hard [1]. In
addition, the link mapping problem onto the SN is an
unsplittable multi-flow problem, which again is NP-Hard [2].
In [3], the authors consider splitting of the links of the VN
among multiple SN paths (a set of links). With this assumption,
the link mapping problem becomes a multi-commodity flow
problem. As for the node mapping, the authors propose a
greedy algorithm that is optimized by taking account of

104

common topological structures, such as hub-and-spoke
topology, within SN and VN.

Other heuristic methods are provided in [4, 5]. In [4],
authors make an extension with a concept of hidden hops. The
hidden hops are the intermediate substrate nodes that are on the
path for a VN link. The author points out that such intermediate
nodes consume resources for forwarding the packets traversing
along the VN link, these consumed resources are considered
using hidden hops. In [5], authors incorporate the node
mapping problem into the link mapping problem, and provide
two heuristic methods to solve the problem.

All of the works described above addresses the VNE
problem for a single SN case. In cloud computing environment,
for example, a federation of multiple cloud computing data
centers is frequent; thus, a VNE problem among multiple SN
needs to be investigated. Scalability problem must be solved in
such problems. In [6], the authors structure a provisioning
management system in a hierarchical structure, i.e. a
management system in the higher level of hierarchy manages
all management system under its administrative domain. In this
structure, by introducing autonomy to each management
system, the upper-level management system can delegate some
of the decisions to the management systems under its
governance.

Another approach for multi SN VNE problem is using
theories from the field of economics. The basic idea is to model
the interactions between the customer and the SN providers
and interactions among SN providers. In [7], two-step auction

model is used to describe the interactions. In the first step, a
Vickrey auction is used so that the customer can learn about the
price for embedding his/her virtual network. Then a second
one-time sealed auction is performed to actually determine
which SN provider wins the bid.

III. PROVISIONING MANAGEMENT ARCHITECTURE

A. Proposed architecture

Before presenting proposed CSO based provisioning
management architecture, we clarify our terminology. In the
previous section, we used terminologies - SN, inter-SN - on
purpose since the VNE problem has often been described with
such terminologies. From now on, we use the term domain to
represent each SN. In addition, the SN will have a new
definition as a CSO agent, who is responsible for mapping of
AS request to residual resources of network stratum (NS);
intra-SN and inter-SN bandwidth will be denoted as intra-
domain and inter-domain bandwidth. In cloud specific terms, a
domain is similar to a cloud data center (CDC) and inter-
domain to the inter-CDC. All these elements abelong to NS. In
our architecture, there are three players - VN creator, CSO
Manager, and CSO Agent. A VN creator is a customer who
wants to create a VN. CSO Manager is the manager who
generates the policy about how to provision incoming VN
requests based on received AS constraints from VN creator and
informs the CSO agents about the policy that it generates. The
main responsibility of the CSO agents is to provision a VN or
some part of the VN request according to the policy that VN
provider sends.

Figure 1. CSO-aware Virtual Cloud Network provisioning scenario across multiple domains

VN Creator

VN Topology: GV(NV,EV)

①VN GV(NV,EV)

Request

AS Topology Analyzer

Allocation Decision Maker

Domain 1 Manager

Resource

DB

Resource

DB

CSO Agent CSO Agent

Cluster A

Cluster B

Cluster C

Inter-Cloud

Communication

Link

②Generate i-level

hierarchy for

GV(NV,EV)

⑥ Provisioning decision

based on the cost function

④Get NS

topology data

CSO Manager

Domain 2 Manager

Update DB Update DB④Get NS

topology data

105

The workflow between the actors is described in Fig. 1.
Once the CSO Manager receives a VN request, it initially asks
every CSO Agent to check whether it can accommodate the
VN request. Each CSO Agent runs a feasibility check and
informs the expected cost of the provisioning to the CSO
Manager. The details of the feasibility check and the cost
computation is described in the later sections. Based on the cost
information, the CSO Manager decides whether to assign the
provisioning request to one of its CSO Agents, or to partition
the VN request into multiple partitions and re-request every
CSO Agents to perform a feasibility check for each of the
partitioned VN requests.

The decision to further partition the graph is determined
based on a greedy algorithm, i.e., the CSO Manager keeps
partitioning the VN request until the cost of allocation
partitioned VN requests becomes more expensive. This process
is bounded by the number of nodes in the VN request; however,
the partitioning process may be stopped after a predetermined
number of partitioning.

B. Use case of CSO-aware VN provisioning

A CSO aware VN provisioning enables optimal placement of
VN based on precise AS topology information provided by VN
creator and NS topology information obtained by CSO Agent.
It is possible to further improve QoS for the applications which
are run on particular VN, if more detailed description of AS
information is given.

In the first scenario it is assumed that VN is used to provide
voice over IP (VoIP) services to the end user. Thus, with pre-
knowledge about VN usage, VN creator will include
application type information A

V
 to the VN topology request

G
V
(N

V
,E

V
,A

V
). It is generally known that voice application is

very sensitive to the network latency compared to bandwidth
and packet loss [21]. When a CSO Manager requests a CSO
agent of each domain manager about the cost of VN allocation,
the CSO agent will include the network latency which domain
is capable to provide (together with VN allocation information).
If VN is going to be allocated by partitioning, the highest value
of the network latency (between all available partitions) is
going to be chosen for entire VN. Based on the responses
provided by domain CSO agents, Allocation Decision Maker
of the CSO manager will decide optimal allocation with
smallest value of the network latency. This allocation can
guarantee provisioning of QoS by the VN to be the best
possible allocation for providing VoIP service.

Similar to above scenario, there can be other ways of
improving QoS of application via CSO-aware VN allocation at
cloud. Above scenario is used to explicitly illustrate advantage
of CSO-aware cloud application. Situation gets even interesting
when VN is heterogeneous, i.e., VN is used for several
application at the same time (such as for online gaming or
video conferencing). In those cases, the CSO manager should
make multi-criteria decision or put preference to one type of
the service over the others. It could be more desirable to split
VN to small pieces based on group of VMs to be running a
particular type of application only. But, more information
should be provided by AS (i.e., by VN creator). As
requirements are not clearly stated (so far) for those cases, we

limit the scope of this paper for the simple scenario, which is
described in following sections.

IV. PROBLEM DEFINITION

The substrate network (SN) is made up of N domains that are
linked by inter-domain links, and each domain consists of
computing servers and links that inter-connect the servers. The
resources of the SN is described primarily by the bandwidth of
each inter-domain link and the resources of each domain refers
to CPU power, and memory and storage capacity of each
compute server and bandwidths of the links that interconnect
the computing servers.

The virtual networks (VNs) that are mapped on top of the
SN consists of nodes described in terms of required CPU
power, memory, and storage capacity, and links that
interconnects the nodes, which is described by the required

bandwidths. The topology of the VN is denoted as VG , and its

partitioned VNs are denoted as V

iG . Note that by definition of

partitioning, the relationship between VG , V

iG , V

jG is shown

in (1).








VV

i

V

j

V

i

GG

jijiGG ,,
 (1)

The cost for mapping a node of a VN to a substrate node
and for mapping a link of a VN to substrate links are defined as

 RVfi : and  RVgi : , respectively. We assume that

these functions are convex and monotonically increasing. The
reason for such properties is to penalize any mapping that uses
a large amount of a single SN resource. In another words, such
cost functions promote load-balancing. In addition, such kind
of penalty is common in everyday life to discourage overuse,
such as the electricity.

Lastly, the cost function for inter-domain link utilization is

denoted by
iLh . We also assume that

iLh is convex and

monotonically increasing for the same reason as the other two
cost functions. In addition, since the inter-domain links are
more expensive than the intra-domain links (generally a

magnitude higher), we let    xgxh jiL  for all jix ,,0 [7].

Finally, the objective of the provisioning algorithm is to
minimize (2). Essentially it is a scaled sum of all the cost

functions where
i ,

i , and i are the weight factors that can

be adjusted for each domain.

       kl

ijL

j

iii

j

iii ZhYgXfC
ij

 (2)

V. PROPOSED ALGORITHM

As mentioned earlier, the provisioning algorithm or the
VNE problem is a NP-Hard problem; thus, only heuristic
solutions exist. Among many heuristic approaches, our
provisioning algorithm is based on graph isomorphism
detection algorithm and graph clustering algorithm.

106

A. Motivation for using graph clustering

Readers may get confused, at first, since splitting VN into
multiple sub-VNs will incur inter-domain link costs, which is
about a magnitude higher than the intra-domain links. However,
there are three cases that may require VN splits. One very
obvious case is due to resource constraints of the SN. i.e. VN
requires more resource than what a single SN offers. Another
case is when a user asks some parts of his/her VN to be
provisioned in different SNs. The last case is more subtle —
the cost of provisioning partitioned VNs is cheaper than
provisioning the entire VN as a whole. As an example,
consider a SN that consists of two domains where domain A is
very cheap but has limited amount of resources and domain B
is very expensive but has abundant amount of resources.
Suppose that a VN to be provisioned in such environment is
too big for domain A. In such case, partitioning may offer a
cheaper provisioning cost despite the expensive inter-cloud
link cost.

The next natural question is how to split the virtual
networks. The most obvious ways is to use the minimum cut
from graph theory. The minimum cut of a graph is a cut that
minimizes the sum of weights that are in the cutset. Thus, if the
bandwidths between the nodes in a VN were used as the edge
weights, the minimum cut would minimize the inter-partition
bandwidth. The minimum cut algorithm has been studied
extensively in the graph theory community, and there are
efficient algorithms [8-9]. There may be cases where a VN is
split not once but multiple times; and the minimum-k cut
algorithm could be used to partition a VN into k partitions. The
minimum k-cut algorithm is known to be NP-complete if k is
part of the input [2]. However, there are several approximation
methods with an approximation ratio of 2-2/k; and one popular
algorithm is using a Gomory-Hu Tree [13].

Although minimum cut and minimum k cut minimizes the
inter-domain bandwidth among partitioned sub-VNs, the
partitioning based on a minimum cut has some weaknesses.
One of such weakness is that it often causes an unbalanced
partition. In other words, most of the nodes are grouped into
one side of the partition [12]. In such case, the sub-VNs with
more nodes may require too much resource, which requires
additional partitioning, which in turn translates to higher inter-
cloud link cost.

B. Graph Clustering

Graph clustering provides a mean to analyze a graph based on
other attributes, such as size of partitions, in addition to the
edge weights. In a general setting, the main idea behind the
clustering algorithm is to find groups with similar elements and
separate non-similar elements. Some of the criteria that can be
used to measure similarity or in another words, quality of intra-
clusters, are expansion and conductance as shown in (3) and
(4), respectively. In (3) and (4) w(u,v) is the edge weight

between node u and v; in (3),  SS, is a cut of the graph and in

(4),      
 


Su Vv

vuwVScSc ,, .

Graph clustering with low conductance is believed to be
superior to minimum cuts because it takes into account the
orders of the sets that are being cut apart, yielding often in

more significant separations. Unfortunately, the clustering
algorithm based on low conductance is a NP-Hard problem;
and, there are many heuristic methods [14].

 SS

vuw

S
SvSu

S ,min

),(

)(
,

min



 (3)

 )(),(min

),(

)(
,

min

SCcSc

vuw

S
SCvSu

S 



 (4)

Two particular types of clustering that we are interested in
are the hierarchical clustering and parametric clustering.
Hierarchical clustering provides a convenient method to split
the graph into multiple pieces at a cheap computational cost
because of the recursive nature of the hierarchy [15]. For our
purpose, if a VN topology or a sub-VN topology requires more
resource than what a single SN can provide, the VN can be
divided into sub-VNs as many time as necessary based on the
hierarchical clustering.

Parametric clustering offers a convenient method to
generate a hierarchical tree of clusters [18]. The idea behind
parametric clustering is to allow some or all edges to be a
function of some variable. Although this does not consider the
entire evolving nature of the structure of the graph (since new
nodes and edges are not dynamically added or deleted), it
allows to describe evolution of the graph. The simplest and
most studied case of parametric clustering is making only the
links to the source and sink node parametric as shown in (5).














tvsuallforconstantisvuw

svallforoffunctioningnonincreasaistvw

tvallforoffunctioningnondecreasaisvsw

,),(

),(

),(





 (5)

The graph clustering algorithm that we use is based on [15],
where the author proposes a parametric clustering algorithm
based on Gomory-Hu tree. The author constructs a parametric
graph by adding an artificial sink to a graph and connecting it
with every node of the graph with the edge value of λ, as the
parameter. The following is some of the interesting properties
of the graph clustering that the authors prove [15], which is
useful for our proposed algorithm.

 λ serves as an upper-bound for inter-cluster capacity
and a lower-bound for intra-cluster capacity which is
described in equation (6), where

φQPS,QPS,tS,s 

 QP

QPc

SV

SVSc

,min

),(),(





 (6)

 Extending the first bullet, with monotonically
increasing value of λ between (0, ∞). The λ values at
which the number of clusters changes are referred as
breakpoints.

107

C. Proposed Algorithm

A more detailed description of our algorithm, which was
initially explained in Section 3, is provided in this section. The
proposed algorithm consists of the following major steps:

Step 1. CSO manager (AS Topology Analyzer) analyzes
the VN provided by the VN customer — computes all
breakpoints of the VN graph using the parametric graph
analysis and constructs the hierarchical tree of clusters.

Step 2. CSO manager identifies the partitioned sub-VNs
for a given break point λ.

Step 3. Every CSO Agent:

1. Runs an isomorphism detection algorithm to find a
suitable mapping for each sub-VN;

2. Computes a cost vector for embedding each sub-
VN.

Step 4. CSO Manager computes the allocation vector i.e.
which CSO Agent embeds which sub-VN.

1. Sort the cost matrix, where each column
represents sub-VNs in decreasing order of
resource demand, and each row represents SNs in
increasing order of available resource;

2. Starting from the sub-VN that requires the most
amount of resource, allocate it to the SN with the
least amount of available resource that can
accommodate the request.

3. Compute the cost for embedding the sub-VNs to
domains and the inter-domain bandwidth cost, if
the VN splitting were used, based on (2).

Step 5. Iterate Step 2 to Step 4 until the total cost is no
longer decreasing.

The inter-domain bandwidth cost computation, step 4-3,
requires a link-mapping algorithm. As described in the related
work, such problem is NP-Hard, thus, in our algorithm, we use
the k-shortest path algorithm to find the link mappings, and
compute the associated cost. The maximum number of
iterations for Step 2 to 4 is |N

V
|, where each node in the VN is

considered as a single sub-VN.

VI. SIMULATION AND ANALYSIS

In this section, we present the preliminary simulation result of
our work. The full simulation with larger number of nodes in
both VN an SN is in progress at the time of writing this paper.

Substrate Network. For our simulation, we chose to use an
extended star topology, since a star topology is the most
popular one in the current cloud data centers. Our substrate
network has four domains, each of which is connected to the
aggregation switch/router, hence completing the first layer of
the star. Each domain is again a star topology with 50 nodes
connected to the Top of Rack switch.

Virtual Network. We chose to use the random graphs
generated by the Barabasi-Albert model for the virtual network
request [19]. The Barabasi-Albert model is one of the methods
for generating random graphs that follow a power law [20].

Since such graphs may be used to describe the characteristics
of the World-Wide-Web (www) links and social networks (e.g.,
Facebook), and such applications are most common at cloud
data center applications, we chose to use the Barabasi-Albert
model for generating random virtual network requests. For the
simulation, we let each VN request to have 15 nodes with
random link weights based on a uniform random distribution
between [50, 100] Mbps.

Mapping cost function. The mapping cost of nodes and
links are defined as the sum of the inverse of the remaining
resource after provisioning the requested VN. This cost model
severely penalizes a provisioning when it tries to allocate a VN
to a substrate network that has a limited amount of resource. In
addition, we define the inter-cluster communication link cost to
be ten times higher than the intra-cluster communication link.

For the analysis, we compare our algorithms to existing
Round Robin algorithm. The Round Robin algorithm does not
consider any partitioning, and it will simply try to map the
entire VN to one of the domains, that is, does not consider
network stratum information. In our implementation, the
Round Robin algorithm will try to the map the VN to the
domain that has the largest amount of CPU resource.

Fig. 2 shows the ratio of the number of VNs accepted to the
total number of VNs requested. For this simulation, the
substrate network had 4 domains with 50 nodes each of which
had 200 units and each intra-domain link had bandwidth of
1Gbps and 10Gbps of bandwidth for inter-domain links.

Figure 2. Simulation result

From the results, we can see that the acceptance ratio of the
round-robin algorithm is not more than 35%, since it tries to
map whole request into one domain, without any clustering
mechanism or any consideration on NS information, and
rejects the request if none of the domains could support the
request. Our proposed algorithm based on CSO and graph
clustering accepts more than 50% of VN requests. The reason
for this is that our proposed algorithm, based on CSO and
graph clustering, considers the number of nodes within each
sub-VN as well as the sum of the weights of the cutset, and
performed better than the Round-Robin provisioning algorithm
of optimal utilization of CDC resources.

0

10

20

30

40

50

60

10 15 20 25 30 35 40 45 50

A
cc

e
p

ta
n

ce
 r

at
io

 [
%

]

CPU request

RoundRobin CSO_aware

108

VII. CONCLUSION

In this paper, we proposed a provisioning algorithms for cloud
data center based on graph clustering algorithm and cross-
stratum optimization. Our algorithm performed significantly
better than the traditional round robin algorithm that does not
have any notion of partitioning the VN request, nor CSO-aware.
In addition, proposed the graph clustering algorithm considers
the number of nodes within each cluster as well as the weights
of the cutset. Moreover, by considering application and
network stratum information, proposed algorithm provides
optimum and QoS-guaranteed resource allocation.

So far, we have only simulated our algorithm in a small
scale cloud data centers. At the time of writing this paper, we
are increasing the scale of our simulation to match a size of a
mid-size cloud data centers to produce more realistic scenario.
Moreover, provisioning of heterogeneous VN request while
optimizing network resource usage and considering QoS of
user application is still open issue.

ACKNOWLEDGMENT

This research was supported in part by KCC (Korea
Communications Commission), Korea, under the ―Novel Study
on Highly Manageable Network and Service Architecture for
New Generation‖ support program supervised by the KCA
(Korea Communications Agency) (KCA-2011-10921-05003).

REFERENCES

[1] D. Andersen, Theoretical approaches to node assignment. Unpublished
manuscript: <http://www.cs.cmu/edu/~dga/papers/andersen-assign.ps>,
2002.

[2] S. Kolliopoulos, C. Stein, ―Improved approximation algorithms for
unsplittable flow problems,‖ in Proc. IEEE FOCS, 1997, pp. 426-435.

[3] M. Yu, Y. Yi, J. Rexford, M. Chiang, ―Rethinking Virtual network
Embedding: Substrate Support for Path Splitting and Migration,‖ ACM
SIGCOMM Computer Communications Review, Vol. 38, Issue 2, April
2008.

[4] J. Botero, X. Hesselbach, A. Fischer, H. Meer, ―Optimal Mapping of
Virtual Networks with Hidden Hops,‖ Telecommunication Systems,
2011, pp.1-10. In Proc. IEEE Network Operations and Management
Symposium (NOMS), 2010.

[5] M. Chowdhury, M. Rahman, R. Boutaba, ―ViNEYard: Virtual Network
Embedding Algorithms with Coordinated Node and Link Mapping,‖
IEEE/ACM Transactions on Networking, no.99, 2011, p. 1-14.

[6] H. Moens, J. Famaey, S. Latre, B. Dhoedt, F. Turck, ―Design and
Evaluation of a Hierarchical Application Placement Algorithm in Large
Scale Clouds,‖ In Proc. of 12th IFIP/IEEE International Symposium on
Integrated Network Management, 2011, pp. 137-144.

[7] F. Zaheer, J. Xiao, R. Boutaba, ―Multi-provider Service Negotiation and
Contracting in Network Virtualization‖ In Proc. IEEE Network
Operations and Management Symposium (NOMS), 2010.

[8] M. Stoer, F. Wagner, ―A Simple Min-Cut Algorithm,‖ Journal of the
ACM, Vol. 22, No. 4, July 1997, pp. 585-591.

[9] D. Karger, C. Stein, ―A New Approach to the Minimum Cut Problem,‖
Journal of the ACM, Vol 43, No. 4, July 1996, pp. 601-640.

[10] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, A. Yumerefendi,
―Embedding Virtual Topologies in Networked Clouds,‖ In Proc.
Conference in Future Internet, June 13-15, 2011, Seoul, Korea.

[11] I. Houidi, W. Louati, W. Ameur, D. Zeghlache, ―Virtual network
provisioning across multiple substrate networks,‖ International Journal
of Computer Networks, Vol. 55, Issue 4, pp. 1011-1023, Mar. 2011.

[12] J. Wang, H. Peng, J. Hu, C. Yang, ―A Graph Clustering Algorithm
Based on Minimum and Normalized Cut,‖ In Proc. of ICCS, Part I,
LNCS 4487, 2007, pp. 497-504.

[13] H. Saran, V. Vazirani, ―Finding k-cuts within twice the optimal,‖ In
Proc. 32nd Annual Symposium on Foundations of Computer Science,
pp. 743-751, 1-4 Oct. 1991.

[14] S. Schaeffer, ―Graph Clustering,‖ In Computer Science Review, Vol. 1,
No. 1, Aug. 2007, pp. 27-64.

[15] G. Flake, R. Tarjan, K. Tsioutsiouliklis, ―Graph Clustering and
Minimum Cut Trees,‖ In Internet Mathematics, Vol. 1, No. 4, 2004, pp.
385-408.

[16] Young Lee and et. al., ―Research Proposal for Cross-Stratum
Optimization (CSO) between Data Centers and Networks,‖ draft-lee-
cross-stratum-optimization-datacenter-00, January 2011.

[17] D. Dhody, ―Cross Stratum Optimization enabled Path Computation,‖
draft-dhody-pce-cso-enabled-path-computation-00, February 2012.

[18] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan, ―A Fast Parametric
Maximum-Flow Algorithm and Applications,‖ SIAM Journal of
Computing, 18, 30–55. 1989.

[19] R. Albert and A.L. Barabasi, ―Statistical mechanics of complex
networks,‖Reviews of Modern Physics, Vol. 74, Issue 1, January 2002,
pp. 47-97.

[20] A. Clauset, C. R. Shalizi, M. E. J. Newman, ―Power-Law Distributions
in Empirical Data,‖ SIAM Review, Vol. 51, Issue 4, pp. 661-703.

[21] Neal Seitz, ―ITU-T Standards for IP-based Networks,‖ IEEE
Communication Magazine, Vol. 41, Issue 6, June 2003.

109

