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Abstract—As virtualization technology matured, the concept of 

virtual network environment has emerged. Because of the 

flexibility of virtualization, the cloud computing services can 

serve various needs of its customers more efficiently. However,  

in most current virtual network provisioning algorithms, 

decisions are made without any consideration of underlying 

network resource states. In this paper, we are focusing on 

combined optimization of resources in the application and 

network stratums, and proposing an efficient and optimized 

resource provisioning algorithm and show its benefits over 

traditional resource allocation. 

Keywords- cloud computing, graph clustering, optimal resource 

provisioning 

I.  INTRODUCTION 

Cloud computing promises to reshape the way IT service is 
produced and consumed by virtualizing computing resources 
(CPU, storage, and network). Virtualization enables flexible 
management of the computing resources, which allows 
dynamic service offerings based on various needs of the cloud 
customers. Among many different aspects of cloud computing 
management issues, such as monitoring and on-line fault 
management, we focus on the provisioning of computing 
resources since we believe that the optimal resource 
provisioning algorithm is the first step to fully utilize the cloud 
computing infrastructure. 

Resource provisioning in the cloud data centers falls into 
the broad category of the Virtual Network Embedding (VNE) 
problem which tries to optimally map a user’s request, known 
as the virtual network (VN), to a substrate network (SN). This 
problem has been widely studied [1-7]. Moreover, QoS related 
parameters, such as latency, jitter, and packet loss, become 
more important in the cloud service provisioning. However, 
many decisions are made in the application space without 
considering underlying network and cross stratum 
application/network optimization (CSO) efforts were proposed 
to focus on this challenges [16] .   

In this paper, we introduce a CSO-aware graph clustering 
based resource provisioning algorithm for the cloud data 
centers. The graph-clustering algorithm is based on the 
algorithm proposed in [15]. In addition, we incorporate a 
hierarchical clustering algorithm to extend our provisioning 
algorithm. 

The paper is organized as follows. Related work is provided 
in Section II. In Section III, we introduce our provisioning 
management architecture and use cases of CSO-aware VN 
provisioning. The problem definition and the proposed 
algorithm are given in Section IV and V, respectively. A 
simulation result and analysis is provided in Section VI. Then 
final concluding remark with description of our future work is 
given in Section VII. 

II. RELATED WORK 

A. Cross-Stratum Optimization  

Cloud applications are used to provide a wide variety of 
services such as video gaming, social networking, grid 
applications and others. Such applications make substantial 
bandwidth demands on the network. In addition these 
applications (e.g., VoIP or HDTV) may require specific bounds 
on QoS related parameters, such as delay and jitter. However, 
many end user applications and services cannot efficiently 
utilize the network, nor can achieve the desired QoS due to 
lack of cross-interaction between cloud providers and substrate 
network. Cross-stratum optimization (CSO) was presented to 
focus these challenges [16]. The main objectives of CSO are i) 
resource optimization, ii) quick response to changing demands, 
and iii) QoS provisioning through better usage of application 
and network information. By taking these opportunities of CSO, 
in this paper, we enhance resource provisioning algorithm via 
CSO for cloud data centers.  

B. Virtual Network Embedding 

Virtual Network Embedding (VNE) to a substrate network is 
known to be a NP-Hard problem [1]. One of the most common 
Virtual Network Embedding (VNE) to a substrate network (SN) 
is known to be a NP-Hard problem [1]. Generally, VNE 
problem is divided into two phases: node mapping phase and 
the link mapping phase. However, even the two phase 
approach is still computationally intractable. The node 
mapping onto the SN that honors the bandwidth constraints is a 
multi-way separator problem, which is NP-Hard [1]. In 
addition, the link mapping problem onto the SN is an 
unsplittable multi-flow problem, which again is NP-Hard [2]. 
In [3], the authors consider splitting of the links of the VN 
among multiple SN paths (a set of links). With this assumption, 
the link mapping problem becomes a multi-commodity flow 
problem. As for the node mapping, the authors propose a 
greedy algorithm that is optimized by taking account of 

104



common topological structures, such as hub-and-spoke 
topology, within SN and VN. 

Other heuristic methods are provided in [4, 5]. In [4], 
authors make an extension with a concept of hidden hops. The 
hidden hops are the intermediate substrate nodes that are on the 
path for a VN link. The author points out that such intermediate 
nodes consume resources for forwarding the packets traversing 
along the VN link, these consumed resources are considered 
using hidden hops. In [5], authors incorporate the node 
mapping problem into the link mapping problem, and provide 
two heuristic methods to solve the problem.  

All of the works described above addresses the VNE 
problem for a single SN case. In cloud computing environment, 
for example, a federation of multiple cloud computing data 
centers is frequent; thus, a VNE problem among multiple SN 
needs to be investigated. Scalability problem must be solved in 
such problems. In [6], the authors structure a provisioning 
management system in a hierarchical structure, i.e. a 
management system in the higher level of hierarchy manages 
all management system under its administrative domain. In this 
structure, by introducing autonomy to each management 
system, the upper-level management system can delegate some 
of the decisions to the management systems under its 
governance. 

Another approach for multi SN VNE problem is using 
theories from the field of economics. The basic idea is to model 
the interactions between the customer and the SN providers 
and interactions among SN providers.  In [7], two-step auction 

model is used to describe the interactions. In the first step, a 
Vickrey auction is used so that the customer can learn about the 
price for embedding his/her virtual network. Then a second 
one-time sealed auction is performed to actually determine 
which SN provider wins the bid. 

III. PROVISIONING MANAGEMENT ARCHITECTURE 

A. Proposed architecture 

Before presenting proposed CSO based provisioning 
management architecture, we clarify our terminology. In the 
previous section, we used terminologies - SN, inter-SN - on 
purpose since the VNE problem has often been described with 
such terminologies. From now on, we use the term domain to 
represent each SN. In addition, the SN will have a new 
definition as a CSO agent, who is responsible for mapping of 
AS request to residual resources of network stratum (NS); 
intra-SN and inter-SN bandwidth will be denoted as intra-
domain and inter-domain bandwidth. In cloud specific terms, a 
domain is similar to a cloud data center (CDC) and inter-
domain to the inter-CDC. All these elements abelong to NS.  In 
our architecture, there are three players - VN creator, CSO 
Manager, and CSO Agent. A VN creator is a customer who 
wants to create a VN. CSO Manager is the manager who 
generates the policy about how to provision incoming VN 
requests based on received AS constraints from VN creator and 
informs the CSO agents about the policy that it generates. The 
main responsibility of the CSO agents is to provision a VN or 
some part of the VN request according to the policy that VN 
provider sends.  

 

 

Figure 1.  CSO-aware Virtual Cloud Network provisioning scenario across multiple domains 
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The workflow between the actors is described in Fig. 1. 
Once the CSO Manager receives a VN request, it initially asks 
every CSO Agent to check whether it can accommodate the 
VN request. Each CSO Agent runs a feasibility check and 
informs the expected cost of the provisioning to the CSO 
Manager. The details of the feasibility check and the cost 
computation is described in the later sections. Based on the cost 
information, the CSO Manager decides whether to assign the 
provisioning request to one of its CSO Agents, or to partition 
the VN request into multiple partitions and re-request every 
CSO Agents to perform a feasibility check for each of the 
partitioned VN requests. 

The decision to further partition the graph is determined 
based on a greedy algorithm, i.e., the CSO Manager keeps 
partitioning the VN request until the cost of allocation 
partitioned VN requests becomes more expensive. This process 
is bounded by the number of nodes in the VN request; however, 
the partitioning process may be stopped after a predetermined 
number of partitioning. 

B. Use case of CSO-aware VN provisioning 

A CSO aware VN provisioning enables optimal placement of 
VN based on precise AS topology information provided by VN 
creator and NS topology information obtained by CSO Agent. 
It is possible to further improve QoS for the applications which 
are run on particular VN, if more detailed description of AS 
information is given.  

In the first scenario it is assumed that VN is used to provide 
voice over IP (VoIP) services to the end user. Thus, with pre-
knowledge about VN usage, VN creator will include 
application type information A

V
 to the VN topology request 

G
V
(N

V
,E

V
,A

V
). It is generally known that voice application is 

very sensitive to the network latency compared to bandwidth 
and packet loss [21]. When a CSO Manager requests a CSO 
agent of each domain manager about the cost of VN allocation, 
the CSO agent will include the network latency which domain 
is capable to provide (together with VN allocation information). 
If VN is going to be allocated by partitioning, the highest value 
of the network latency (between all available partitions) is 
going to be chosen for entire VN. Based on the responses 
provided by domain CSO agents, Allocation Decision Maker 
of the CSO manager will decide optimal allocation with 
smallest value of the network latency. This allocation can 
guarantee provisioning of QoS by the VN to be the best 
possible allocation for providing VoIP service. 

Similar to above scenario, there can be other ways of 
improving QoS of application via CSO-aware VN allocation at 
cloud. Above scenario is used to explicitly illustrate advantage 
of CSO-aware cloud application. Situation gets even interesting 
when VN is heterogeneous, i.e., VN is used for several 
application at the same time (such as for online gaming or 
video conferencing). In those cases, the CSO manager should 
make multi-criteria decision or put preference to one type of 
the service over the others. It could be more desirable to split 
VN to small pieces based on group of VMs to be running a 
particular type of application only. But, more information 
should be provided by AS (i.e., by VN creator). As 
requirements are not clearly stated (so far) for those cases, we 

limit the scope of this paper for the simple scenario, which is 
described in following sections. 

IV. PROBLEM DEFINITION 

The substrate network (SN) is made up of N domains that are 
linked by inter-domain links, and each domain consists of 
computing servers and links that inter-connect the servers. The 
resources of the SN is described primarily by the bandwidth of 
each inter-domain link and the resources of each domain refers 
to CPU power, and memory and storage capacity of each 
compute server and bandwidths of the links that interconnect 
the computing servers. 

The virtual networks (VNs) that are mapped on top of the 
SN consists of nodes described in terms of required CPU 
power, memory, and storage capacity, and links that 
interconnects the nodes, which is described by the required 

bandwidths. The topology of the VN is denoted as VG , and its 

partitioned VNs are denoted as V

iG . Note that by definition of 

partitioning, the relationship between VG , V

iG , V

jG  is shown 

in (1). 
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The cost for mapping a node of a VN to a substrate node 
and for mapping a link of a VN to substrate links are defined as 

 RVfi :  and  RVgi : , respectively. We assume that 

these functions are convex and monotonically increasing. The 
reason for such properties is to penalize any mapping that uses 
a large amount of a single SN resource. In another words, such 
cost functions promote load-balancing. In addition, such kind 
of penalty is common in everyday life to discourage overuse, 
such as the electricity. 

Lastly, the cost function for inter-domain link utilization is 

denoted by 
iLh . We also assume that 

iLh  is convex and 

monotonically increasing for the same reason as the other two 
cost functions. In addition, since the inter-domain links are 
more expensive than the intra-domain links (generally a 

magnitude higher), we let    xgxh jiL   for all  jix ,,0  [7]. 

Finally, the objective of the provisioning algorithm is to 
minimize (2). Essentially it is a scaled sum of all the cost 

functions where 
i , 

i , and i  are the weight factors that can 

be adjusted for each domain. 
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V. PROPOSED ALGORITHM 

As mentioned earlier, the provisioning algorithm or the 
VNE problem is a NP-Hard problem; thus, only heuristic 
solutions exist. Among many heuristic approaches, our 
provisioning algorithm is based on graph isomorphism 
detection algorithm and graph clustering algorithm. 
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A. Motivation for using graph clustering 

Readers may get confused, at first, since splitting VN into 
multiple sub-VNs will incur inter-domain link costs, which is 
about a magnitude higher than the intra-domain links. However, 
there are three cases that may require VN splits. One very 
obvious case is due to resource constraints of the SN. i.e. VN 
requires more resource than what a single SN offers. Another 
case is when a user asks some parts of his/her VN to be 
provisioned in different SNs. The last case is more subtle — 
the cost of provisioning partitioned VNs is cheaper than 
provisioning the entire VN as a whole. As an example, 
consider a SN that consists of two domains where domain A is 
very cheap but has limited amount of resources and domain B 
is very expensive but has abundant amount of resources. 
Suppose that a VN to be provisioned in such environment is 
too big for domain A. In such case, partitioning may offer a 
cheaper provisioning cost despite the expensive inter-cloud 
link cost. 

The next natural question is how to split the virtual 
networks. The most obvious ways is to use the minimum cut 
from graph theory. The minimum cut of a graph is a cut that 
minimizes the sum of weights that are in the cutset. Thus, if the 
bandwidths between the nodes in a VN were used as the edge 
weights, the minimum cut would minimize the inter-partition 
bandwidth. The minimum cut algorithm has been studied 
extensively in the graph theory community, and there are 
efficient algorithms [8-9].  There may be cases where a VN is 
split not once but multiple times; and the minimum-k cut 
algorithm could be used to partition a VN into k partitions. The 
minimum k-cut algorithm is known to be NP-complete if k is 
part of the input [2]. However, there are several approximation 
methods with an approximation ratio of 2-2/k; and one popular 
algorithm is using a Gomory-Hu Tree [13]. 

Although minimum cut and minimum k cut minimizes the 
inter-domain bandwidth among partitioned sub-VNs, the 
partitioning based on a minimum cut has some weaknesses. 
One of such weakness is that it often causes an unbalanced 
partition. In other words, most of the nodes are grouped into 
one side of the partition [12]. In such case, the sub-VNs with 
more nodes may require too much resource, which requires 
additional partitioning, which in turn translates to higher inter-
cloud link cost. 

B. Graph Clustering 

Graph clustering provides a mean to analyze a graph based on 
other attributes, such as size of partitions, in addition to the 
edge weights. In a general setting, the main idea behind the 
clustering algorithm is to find groups with similar elements and 
separate non-similar elements. Some of the criteria that can be 
used to measure similarity or in another words, quality of intra-
clusters, are expansion and conductance as shown in (3) and 
(4), respectively. In (3) and (4) w(u,v) is the edge weight 

between node u and v; in (3),  SS,  is a cut of the graph and in 

(4),      
 


Su Vv

vuwVScSc ,, . 

Graph clustering with low conductance is believed to be 
superior to minimum cuts because it takes into account the 
orders of the sets that are being cut apart, yielding often in 

more significant separations. Unfortunately, the clustering 
algorithm based on low conductance is a NP-Hard problem; 
and, there are many heuristic methods [14]. 
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Two particular types of clustering that we are interested in 
are the hierarchical clustering and parametric clustering. 
Hierarchical clustering provides a convenient method to split 
the graph into multiple pieces at a cheap computational cost 
because of the recursive nature of the hierarchy [15]. For our 
purpose, if a VN topology or a sub-VN topology requires more 
resource than what a single SN can provide, the VN can be 
divided into sub-VNs as many time as necessary based on the 
hierarchical clustering. 

Parametric clustering offers a convenient method to 
generate a hierarchical tree of clusters [18]. The idea behind 
parametric clustering is to allow some or all edges to be a 
function of some variable. Although this does not consider the 
entire evolving nature of the structure of the graph (since new 
nodes and edges are not dynamically added or deleted), it 
allows to describe evolution of the graph. The simplest and 
most studied case of parametric clustering is making only the 
links to the source and sink node parametric as shown in (5). 
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The graph clustering algorithm that we use is based on [15], 
where the author proposes a parametric clustering algorithm 
based on Gomory-Hu tree. The author constructs a parametric 
graph by adding an artificial sink to a graph and connecting it 
with every node of the graph with the edge value of λ, as the 
parameter. The following is some of the interesting properties 
of the graph clustering that the authors prove [15], which is 
useful for our proposed algorithm. 

 λ serves as an upper-bound for inter-cluster capacity 
and a lower-bound for intra-cluster capacity which is 
described in equation (6), where 

φQPS,QPS,tS,s   

 QP

QPc

SV

SVSc

,min

),(),(





  (6) 

 Extending the first bullet, with monotonically 
increasing value of λ between (0, ∞). The λ values at 
which the number of clusters changes are referred as 
breakpoints. 
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C. Proposed Algorithm 

A more detailed description of our algorithm, which was 
initially explained in Section 3, is provided in this section. The 
proposed algorithm consists of the following major steps: 

Step 1. CSO manager (AS Topology Analyzer) analyzes 
the VN provided by the VN customer — computes all 
breakpoints of the VN graph using the parametric graph 
analysis and constructs the hierarchical tree of clusters. 

Step 2. CSO manager identifies the partitioned sub-VNs 
for a given break point λ. 

Step 3. Every CSO Agent: 

1. Runs an isomorphism detection algorithm to find a 
suitable mapping for each sub-VN; 

2. Computes a cost vector for embedding each sub-
VN. 

Step 4. CSO Manager computes the allocation vector i.e. 
which CSO Agent embeds which sub-VN. 

1. Sort the cost matrix, where each column 
represents sub-VNs in decreasing order of 
resource demand, and each row represents SNs in 
increasing order of available resource; 

2. Starting from the sub-VN that requires the most 
amount of resource, allocate it to the SN with the 
least amount of available resource that can 
accommodate the request. 

3. Compute the cost for embedding the sub-VNs to 
domains and the inter-domain bandwidth cost, if 
the VN splitting were used, based on (2). 

Step 5. Iterate Step 2 to Step 4 until the total cost is no 
longer decreasing. 

The inter-domain bandwidth cost computation, step 4-3, 
requires a link-mapping algorithm. As described in the related 
work, such problem is NP-Hard, thus, in our algorithm, we use 
the k-shortest path algorithm to find the link mappings, and 
compute the associated cost. The maximum number of 
iterations for Step 2 to 4 is |N

V
|, where each node in the VN is 

considered as a single sub-VN. 

VI. SIMULATION AND ANALYSIS 

In this section, we present the preliminary simulation result of 
our work. The full simulation with larger number of nodes in 
both VN an SN is in progress at the time of writing this paper. 

Substrate Network. For our simulation, we chose to use an 
extended star topology, since a star topology is the most 
popular one in the current cloud data centers. Our substrate 
network has four domains, each of which is connected to the 
aggregation switch/router, hence completing the first layer of 
the star. Each domain is again a star topology with 50 nodes 
connected to the Top of Rack switch. 

Virtual Network. We chose to use the random graphs 
generated by the Barabasi-Albert model for the virtual network 
request [19].  The Barabasi-Albert model is one of the methods 
for generating random graphs that follow a power law [20]. 

Since such graphs may be used to describe the characteristics 
of the World-Wide-Web (www) links and social networks (e.g., 
Facebook), and such applications are most common at cloud 
data center applications, we chose to use the Barabasi-Albert 
model for generating random virtual network requests. For the 
simulation, we let each VN request to have 15 nodes with 
random link weights based on a uniform random distribution 
between [50, 100] Mbps. 

Mapping cost function. The mapping cost of nodes and 
links are defined as the sum of the inverse of the remaining 
resource after provisioning the requested VN. This cost model 
severely penalizes a provisioning when it tries to allocate a VN 
to a substrate network that has a limited amount of resource. In 
addition, we define the inter-cluster communication link cost to 
be ten times higher than the intra-cluster communication link.  

For the analysis, we compare our algorithms to existing 
Round Robin algorithm. The Round Robin algorithm does not 
consider any partitioning, and it will simply try to map the 
entire VN to one of the domains, that is, does not consider 
network stratum information. In our implementation, the 
Round Robin algorithm will try to the map the VN to the 
domain that has the largest amount of CPU resource. 

Fig. 2 shows the ratio of the number of VNs accepted to the 
total number of VNs requested. For this simulation, the 
substrate network had 4 domains with 50 nodes each of which 
had 200 units and each intra-domain link had bandwidth of 
1Gbps and 10Gbps of bandwidth for inter-domain links.  

 

 

Figure 2.  Simulation result  

From the results, we can see that the acceptance ratio of the 
round-robin algorithm is not more than 35%, since it tries to 
map whole request into one domain, without any clustering 
mechanism or any consideration on NS information, and 
rejects the request if none of the domains could support the 
request. Our proposed algorithm based on CSO and graph 
clustering accepts more than 50% of VN requests. The reason 
for this is that our proposed algorithm, based on CSO and 
graph clustering, considers the number of nodes within each 
sub-VN as well as the sum of the weights of the cutset, and 
performed better than the Round-Robin provisioning algorithm 
of optimal utilization of CDC resources. 
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VII. CONCLUSION 

In this paper, we proposed a provisioning algorithms for cloud 
data center based on graph clustering algorithm and cross-
stratum optimization. Our algorithm performed significantly 
better than the traditional round robin algorithm that does not 
have any notion of partitioning the VN request, nor CSO-aware. 
In addition, proposed the graph clustering algorithm considers 
the number of nodes within each cluster as well as the weights 
of the cutset. Moreover, by considering application and 
network stratum information, proposed algorithm provides 
optimum and QoS-guaranteed resource allocation. 

So far, we have only simulated our algorithm in a small 
scale cloud data centers. At the time of writing this paper, we 
are increasing the scale of our simulation to match a size of a 
mid-size cloud data centers to produce more realistic scenario. 
Moreover, provisioning of heterogeneous VN request while 
optimizing network resource usage and considering QoS of 
user application is still open issue.  
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